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Abstract—This paper describes a machine learning approach
to the solar flare prediction competition, a track in IEEE Big
Data 2019 Big Data Cup. The competition task is to predict
whether or not there is a solar flare event basing on a given time
series of solar magnetic field parameters. Our method involves
exploring and constructing data-driven machine learning models
for the classification task of two imbalanced class labels from
time series. Specifically, the investigated models include boosting,
logistic regression, multilayer perceptron neural network, and
long short-term memory neural network. These models have been
successfully deployed and combined in an ensemble framework
with two tiers in our final proposed solution for this competition.
Our proposed approach ranked at the second place in the
competition (the first on the private board and the eleventh on
the public board).

Index Terms—Gradient boosting decision tree, Logistic re-
gression, Multilayer perceptron neural network, Long Short-
term memory neural network, Ensemble framework, Solar flare
prediction, multivariate time series.

I. INTRODUCTION

Solar flares and Coronal Mass Ejections (CMEs) [2] may
affect technology-dependent society, such as having negative
impacts on space equipment, power grids, and high-frequency
radio communication. Many of these fields are critical to
security and economic vitality [32]. Therefore, many ongoing
research and development efforts are striving to predict solar
eruptive activities and then to perform timely actions to
mitigate their negative impacts. Recent advancements in the
machine learning field suggest that it has strong potential in
resolving complex tasks using a data-driven approach. This
paper proposes a novel data-driven method in response to the
Solar Flare Prediction from Time Series of Solar Magnetic
Field Parameters, a track in the IEEE Big Data Cup 2019 [12].

In this paper, we approach this challenge by first exploring
relevant machine learning models for this specific task. We
then combine the investigated models into an ensemble frame-
work with two tiers. Specifically, the first tier contains four
explored machine learning models, namely boosting, logistic
regression, multilayer perceptron neural network, and long
short-term memory neural network. Stacked on top of the
first tier, the second tier collects the outputs from the models
in the first tier, analyzes, and produces the final prediction.
More information about the tiers is provided in Section V.
Also, the given data is divided into three sets as training,

validation, and submission sets. The training and validation
sets are used to explore the models and the final configurations.
The submission set is used to generate the prediction results
for this IEEE Big Data 2019 competition.

The rest of this paper is organized as follows. Section II
briefly describes the data and evaluation metric of this compe-
tition. This section is followed by Section III, which discusses
the current, data-driven approaches to this specific task in
the literature. Next, Section IV uses visualization techniques
to explore and analyze the given data. After getting a good
understanding of the input data, Section V details our approach
concerning how we explore and combine the strengths of
machine learning models in our final framework. This section
also reviews the results of individual models, as well as the
combined solution. Finally, we give conclusions and future
directions in Section VII.

II. DATA AND EVALUATION METRIC

The dataset for this competition stemmed from
Spaceweather HMI (Helioseismic and Magnetic Imager)
Active Region Patch (SHARP) [4]. Data Mining Lab at
Georgia State University processed it considerably and made
the resulted dataset available for this competition [13]. The
main task of the competition is to predict whether or not
there would be an M-class or an X-class flare event [14]
within the next twenty-four hours given observations as
a multivariate time series. Each time series contains 25
space-weather variables over 60 steps observed at 12-minute
intervals. A critical aspect of this dataset making it realistic
and challenging is the imbalance of the two predicting
classes (1 as flaring and 0 otherwise). The data can be briefly
described as the following equations:

Input :(x1, x2, ..., xN )1, ..., (x1, x2, ..., xN )T

Output :

{
0, if non-flaring
1, if flaring

where N = 25 is the number of space-weather variables, and
T = 60 is the number of observed time steps prior to the
predicted output. One single set of inputs with a corresponding
output class is called an object. The object has the format as
follows:
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• id - an identifier for the object,
• classNum - class identifier for the object,
• values - an array time series of shape 60× 25.
The dataset is a set of partially overlapping sliced samples

pulled from larger multi-variate time series. It is then separated
into some smaller, temporally disjoint parts to mitigate over-
fitting and sampling bias. Specifically, the competition data is
divided into three folds sampled from May 2010 to March
2012 (fold 1), March 2012 to October 2013 (fold 2), and
October 2013 to March 2014 (fold 3) correspondingly. The
sample sizes and ratios of class 1 to total data for these three
partitions are as follows:

• fold 1: 76,773 objects; class 1 accounting for 16.39%
• fold 2: 92,481 objects; class 1 accounting for 15.10%
• fold 3: 27,006 objects; class 1 accounting for 17.66%

There is one additional fold for the submission sampled from
March 2014 up to August 2018 [11]. This submission fold
is further divided into a public fold (for ranking on the
public board) and a private fold (for ranking on the private
board). The two sampling periods for these two folds are non-
overlapping and are from March 2014 up to March 2015 and
from March 2015 until August 2018. However, by the time
of this competition, it was unknown which fold is public or
private. Furthermore, the submission fold contains 173,512
objects of unknown class labels (0 or 1). However, it is
observable from the above three folds and is confirmed by
the competition data description details [13] that it is safe to
assume that percentages of class 1 are relatively similar across
all folds.

Due to imbalanced binary classification nature, the eval-
uation metric for this competition is the F1 score [17] of
the predicted results. The F1 score is the harmonic mean of
precision and recall, thus helps to balance these two quantities.
It is defined as:

F1 =
2

recall−1 + precision−1
= 2× precision× recall

precision+ recall

III. LITERATURE REVIEW

Most of the recent approaches to this solar flare predic-
tion problem are data-driven [18]. These approaches can be
grouped into two main categories. They are linear statistical
and non-linear statistical approaches. The typical works of
the first approach include correlation-based methods, which
study the relationship between the observed data and the flare
events [8], [20] and linear discriminant analysis (LDA) for
classification [26]. The latter, non-linear methods, is based on
logistic regressions [44], relevance vector machine [1], support
vector machine (SVM) [5], [35], [41], cascade-correlation
neural networks (CCNN) [41], k-nearest neighbors (k-NN)
[35], or extremely randomized tree (ERT) [35].

A recent research [18] suggested to reduce the large number
of dimensions in this dataset by six statistical summaries (min,
max, standard deviation, skew, mean, and median) to present
each time series before applying the k-NN classification
method for the prediction task. These statistical values are used

to consider the impact of the time component in the dataset.
This work also suggests that TOTUSJH is a useful variable
as it achieves maximum mean True Skill Statistic (TSS)
[3]. Similarly, there are works in the literature that exploit
the significance of individual variables in the classification
process. For instance, Ma et al. [29] suggests that USFLUX
and TOTUSJZ are worthy variables for this task. On the other
hand, based on domain knowledge, maximum R VALUE can
be used as a filter on non-flaring regions [43]. Understanding
the technical descriptions of these variables is not required to
follow the data-driven approaches to this problem described
in this section. However, interested readers can refer to the
competition site [13] for the names and technical details of
the solar magnetic field parameters.

Multivariate time series data is growing in terms size and
application domains [10] - cybersecurity [36], environmental
monitoring [39], abnormality detection [37], social media topic
evolution [9], [33], [38] to name but a few. These real-world
applications generate multiple variables across time to produce
high-quality, reliable, and statistically sound information. The
datasets for this competition also involve multivariate time
series data. Thus, our solution also takes time and sequences
into account.

Long Short-Term Memory (LSTM) [19] neural networks
produce current successes in various application domains,
which involve multivariate time series data, from predicting the
saturated thickness of aquifers [34] to efficient manufacturing
and system operations [25]. There are also recent works [6]
in the literature using LSTM to predict solar flare events.
Experimental results from these works show that LSTM neural
network outperforms related machine-learning methods in the
solar flare prediction problem [27]. Therefore, the first tier in
our ensemble framework also includes the LSTM model to
analyze the temporal information from the datasets.

As discussed, there are different approaches to this solar
flare prediction problem with different models and results.
Thus, it is natural that there were many efforts in the literature,
which follow the hybrid and ensemble approaches to deal with
this research problem. In general, these techniques combine a
set of predictions from different models to improve the pre-
diction accuracy. The predicted results could merely be taking
the average of multiple models, or using more sophisticated
techniques for data assimilation. Interested readers can refer
to [31] for a useful and thorough review of related works
in this direction to space weather forecasting tasks. We also
adopt this research approach in our method. To the best of
our knowledge, this is the first method that ensembles the
LSTM, logistic regression, multilayer perceptron (MLP) neural
network [16], and boosting (LightGBM [21]) techniques in a
two-tier structure. We discuss the details of our approach in
Section V. We first provide an oveview of the data for this
Solar Flare Prediction from Time Series of Solar Magnetic
Field Parameters challenge.
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IV. DATA EXPLORATION

The first step toward tackling this challenge is to get a
sense of how the data looks like. Thus, we use pandas
profiling1 for data exploratory process. This library helps to
generate a comprehensive statistical report for the data set,
including basic data type information, descriptive statistics
(e.g., min, max, mean, average), quantile statistics, and other
useful statistics. Figure 1 shows some worth noting statistics
for two sample variables of the dataset (the 59th time step
of EPSX and EPSY variables). It’s worth noting from this
quick profiling step that there are missing values, and different
variables have different distribution shapes and/or domain
ranges.

Fig. 1. Sample overview of two variables (59th time step of EPSX and
EPSY) from the dataset using descriptive statistics.

Missing values are another critical aspect of the data explo-
ration step. Missing values hurt the accuracy of our prediction
models if we do not handle these with care. Hence, we also
explore the percentages of missing values for the 25 variables
from the competition dataset. The boxplot in Figure 2 depicts
the distribution of the portions of missing values for these 25
magnetic field parameters. In particular, most of the variables
contain about 0.6% of missing values. The maximum of the
missing percentages are approximately 2.2%. These significant
numbers suggest the need to devise strategies for handling
missing values in our solution.

Fig. 2. Distribution of the percentages of missing values for the 25 variables
in the dataset. Most of the variables have about 0.6% of missing values,
and the maximum percentage of missing values for an individual variable is
approximately 2.2%.

Furthermore, there are also suggestions from domain experts
and related work in the literature that some raw features

1https://pandas-profiling.github.io/pandas-profiling/docs/

(provided by the competition data) or generated features (de-
rived from the provided data, e.g., using statistical formulas)
are more important than the others. For instance, Figure 3
shows that the maximum value of the variable R VALUE,
MAX(data.R VALUE), and the maximum value of USFLUX
variable, MAX(data.USFLUX), from each time series help
in separating the two class labels (i.e., 0 vs. 1) reasonably
well. This observation suggests us to analyze and explore the
significance of different raw and generated features in our
solution.

Fig. 3. Maximum of R VALUE (MAX(data.R VALUE)), and maximum of
USFLUX (MAX(data.USFLUX)) are two promising variables in classifying
solar flare events: orange for flaring and blue for non-flaring.

From the previous exploration, it is tempting to visualize
and examine the differences of the solar magnetic field pa-
rameters over time for class-0 objects versus those for class-1
objects. The differences in values of an individual parameter of
class 1 versus class 0 indicate its potential uses in classifying
the two classes. However, this task is challenging due to a
large number of objects to be visualized. Therefore, we sample
1,000 objects of class 0 and another 1,000 objects of class 1
from the training set. The sample size (i.e., 1,000) is large
enough to assure that the sampled objects are representative
of the two classes.

After having the samples, the next step is to select a
visualization solution that enbles us to visualize such a large
amount of data. Line-graph is often used to visualize time
series data because it can represent the value differences well
[39]. However, for a large number of time-series objects, line-
graph representation induces visual cluttering issues. Heat-map
is one potential solution to solve this issue. It represents data
in the form of rows and columns. The rows represent the
variables, and the columns represent time steps. The cell color
represents the value of a variable of a specific data entry at a
specified time-step. However, in this case, the large numbers
of samples (1,000) and time steps (60) requires a large amount
of cells (60,000) to be visualized. These extreme number
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of visual elements make it impractical to use the traditional
heatmap to represent the data.

Therefore, we devise a type of heatmap called Continuous
Heatmap for this task. It is an approach for abstracting a large
number of time series data in the form of continuous heatmaps,
which significantly reduce the rendering time compared to the
conventional heatmap. Continuous Heatmap first orders the
time-series by their similarities. It then groups proximity cells
with similar values into blobs. Instead of visualizing every
individual cell, Continuous Heatmap visualizes the data by a
smaller number of blobs. This approach helps in rendering
a large amount of time series, thus enables us to explore
their overall patterns. Besides allowing us to render a large
amount of time series, our continuous visualization approach
also provides a high level of generalization in visual encoding.
Therefore, it allows the user to see the overview of the data
rather than looking at individual details. The ability to provide
quick and general views is helpful at the data exploration stage.

Figure 4 shows the Continuous Heatmap visualizations for
1,000 class-0 objects (on the left) and the same number of
class-1 objects (on the right) for four example variables (i.e.,
TOTUSJH, TOTUSJZ, MEANJZH, and EPSX). The time
series from each of the variable across two classes are com-
bined and scaled linearly to the range [0, 1] before splitting
back to their corresponding set of object types. This scaling
step helps to show the value differences of an individual
variable across the two classes and relative changes among
variables. The color scale is shown at the top-left corner:
darker green for low values and darker red for high values.
Notice that the vertical orders of objects are different for
different Continuous Heatmaps. That is, the vertical orders of
objects are to optimize the continuous areas in the individual
heatmap to reduce the number of blobs and hence to minimize
the rendering time.

It is observable that there are apparent differences in value
distributions of TOTUSJH and TOTUSJZ between class-0 and
class-1 objects. Also, the differences are relatively consistent
among objects. Specifically, most of them are lower in class
1 compared to class 0. On the other hand, the differences
between the MEANJZH parameters for the two object labels
are not significant. Furthermore, there are also changes in
values of EPSX in the two classes, but they are not consistent
among objects (some are higher, while the others are lower).
These also confirm that some variables (e.g., TOTUSJH and
TOTUSJZ) are more utilizable in the classification task [29]
compared to the others (e.g., MEANJZH and EPSX) as
discussed in our Related work section.

One additional observation which is shared among all
Continuous Heatmap charts is that there are not many changes
in values of an individual parameter across time (i.e., there are
not many changes from left to right). The potential implication
of this consistent values over time is that the time and
sequences information might not be as useful in this case.
This is why we decide to select the latest timestamps prior to
the prediction of the other 23 variables (i.e., the 60th value in
each of the 23 time series) in the Gradient boosting decision

tree (GBDT) [15], will be discussed in Section V-A.

Fig. 4. Continuous Heatmap visualizations for 1,000 class-0 objects (on
the left) and the same number of class-1 objects (on the right) for four
sample variables (i.e., TOTUSJH, TOTUSJZ, MEANJZH, and EPSX). X-axis
represent time steps (0 to 60), y-axis represent 1,000 objects (due to space
limitation, only a few object ids are displayed). In the heatmap, darker green
cells represent low values and darker red cells represent for high values.

V. METHOD AND RESULT

Figure 5 shows a schematic overview of our ensemble
approach by adopting an LSTM neural network, an MLP
neural network, a logistic regression model, and a LightGBM
model into one tier (tier 1). This tier then feed a second one
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(tier 2), which consists of another logistic regression model to
produce the final output of our predictive model. Additional
investigations into different ensemble configurations (e.g.,
different numbers of tiers and different numbers of models
or model types per tier) are worth exploring in the future.

Fig. 5. General schematic diagram for our method: The first tier includes four
models (i.e., they are a LightGBM model, a logistic regression model, an MLP
neural network model, and an LSTM neural network model). The second tier
contains another logistic regression model that assimilates the results from
the previous tier and produces the final prediction.

The competition datasets are separated into training set
(consisting of fold 1 and fold 2), validation set (fold 3) and
the submission set (fold submission). The training set is used
to train models from tier 1, and the validation set is used
for early stopping during the learning process (except for the
logistic regression models). The learned models from tier 1
are then used to make probability predictions on this training
dataset. The resulted probability predictions are then fed into
tier 2 to train a meta-data model. The learned models from
both tiers are then used to make probability predictions on the
submission set.

The following sections discuss the detailed configurations
of each model used in the two tiers of our solution, their
corresponding individual result, and also the final result of
our ensemble framework.

A. Gradient boosting decision tree

Gradient boosting decision tree (GBDT) [15] is a widely-
used machine learning algorithm due to its efficiency, ac-
curacy, and interpretability. GBDT achieves state-of-the-art
performances in many machine learning tasks. For instance,
among 29 challenges published on Kaggle 2 in 2015, 17
winning solutions used GBDT [7]. There are many imple-
mentations of GBDT, such as XGboost [7], Catboost [40],
InfiniteBoost [42], and LightGBM [22]. In this paper, we adopt
LightGBM as one of the four models in the tier due to its
accuracy and speed (thanks to its parallel training support). It
is also confirmed by Ma et al. [30] that recent experimental
results support the statement “LightGBM is more efficient and
accurate than other existing boosting tools”.

2https://www.kaggle.com/

The input data fed to the LightGBM model contains 318
features. These features include all temoral values of the two
important variables TOTUSJH and TOTUSJZ (i.e. 2 × 60
variables), the latest timestamps prior to the prediction of
the other 23 variables (i.e. the 60th value in each of the 23
time series), and seven statistical summaries (i.e. max, mean,
median, min, skew, standard deviation, and sum) for each
of the 25 raw variables (175 statistical summaries in total).
The reason to select all temporal values of TOTUSJH and
TOTUSJZ as input variables for the LightGBM model is that
they are useful variables as explored from the literature review
(discussed in Section III). Another decision worth discussing
is to select the latest known points before the predictions but
the other time steps of the other 23 variables. This decision
was made with the assumption that the most recent known
values before the event would reflect better knowledge about
the event itself.

Also comparing to the previous work, besides the other
six statistical features, we use ‘sum’ as an additional one.
Though ‘sum’ and ‘mean’ in this competition dataset are
highly correlated, they are slightly different because ‘sum’
takes missing values into account whereas ‘mean’ does not.
Thus, ‘sum’ still brings some marginally useful information
for the training process and prediction results. Specifically,
without using the ‘sum’ feature in this model, the F1 score on
the validation set is 0.71637 with respect to (w.r.t, hereafter)
a logarithmic loss (log loss, hereafter) of 0.38389. This F1

score is slightly lower than the results (reported later in this
section) utilizing ‘sum’.

To work with LightGBM, the analysts need to tune on sev-
eral hyper-parameters. These parameters include the number
of leaves per tree, learning rate, maximum learning depth,
the minimum number of data in each leaf, feature fraction,
and bagging fraction. In this case, we use Hyperopt [24] for
optimizing of these values. It is a Bayesian model-based,
distributed, asynchronous hyper-parameter optimization over
awkward search spaces. The idea of Hyperopt is to choose
the next hyper-parameter values to evaluate based on the
past results. This strategy helps to concentrate the search
on more promising values. Besides, we use a class weight
(class weight) of 2.5 for class 1 to tackle the class im-
balance issue. Equally important, we set small max depth
(max depth = 3), feature fraction (feature fraction =
0.5), and bagging fraction (bagging fraction = 0.5) to avoid
overfitting.

The loss function used in this solution is log loss. It is the
standard loss functions used in the literature on a probabilistic
prediction from a data sequence [45]. Also, since F1 score is
the evaluation metric for the submission set of this competi-
tion, it is natural that we use it as an early stopping metric for
this model. In other words, the early stopping criteria is the
F1 score of the predicted results over the validation set.

Figure 6 shows the training process of the LightGBM model
completes after 1,815 boosting iterations, with F1 score on the
validation set of 0.7174 (w.r.t a log loss of 0.2656). Figure 7
shows the confusion matrix of the classification results when
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Fig. 6. F1 scores of training and validation datasets during LightGBM model
training. The LightGBM model training completes at about 1,815 boosting
iterations (i.e., after this point, the training F1 score continues to increase,
but that score of the validation set starts to decrease).

apply the validation dataset to the learned LightGBM model.

Fig. 7. Confusion matrix of the classification results applying only LightGBM
model to the validation set.

Furthermore, it is also important to explore the importance
of features in contribution to the accuracy of the results using
the LightGBM model. After training, the importance of each
feature of the model is calculated using SHAP (SHapley Addi-
tive exPlanations). SHAP [28] is a unified approach to explain
the output of any machine learning model by game theory
and local explanations. To be more specific, the importance
represents the mean absolute value of the SHAP values for
each feature.

Figure 8 shows top 15 useful features in this LightGBM
model. Based on the figure, we can see that the standard
deviation of ABSNJZH variable, STD(data.ABSNJZH), is the
most important feature. Besides, the ‘sum’ of R VALUE,
SUM(data.R VALUE), is also in the top list, this explains why
we added this statistical feature in training the LightGBM
model as discussed previously. Please also note that these

are the levels of significance for the 318 individual features
with corresponding values described above (i.e., they are not
the raw variables as the whole time series in the competition
dataset).

Fig. 8. Top 15 important features out of 318 individual features (see Section
V-A) as inputs for the learned LightGBM model based on SHAP. Note that
these are not the raw variables as the whole time series in the competition
dataset.

B. MLP neural network

Fig. 9. Our MLP neural network architecture. It comprises one output layer,
one dense layer with 300 hidden units, and three other dense layers with 200
hidden units each. It also includes two dropout layers to tackle the overfitting
issue.

As discussed previously, we also use an MLP neural net-
work in tier 1 of our solution. The total number of input
features for training this model is 1,850. These include all
raw features (60 × 25 = 1, 500), 175 statistical features
(as discussed in Section V-A), and 175 numerical ranks of
these features. Also, different features would have different
measurement units, thus value ranges. Therefore, we scale all
these 1,850 features to [0,1] range using min-max normal-
ization3. In other words, the values across each column are

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html
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linearly scaled to the range [0, 1]. Specifically, training set
(fold1 and fold2), validation set (fold3), and submission set
(fold submission) are scaled individually and separately. This
scaling step helps to avoid one, or some features dominating
the others in contribution to the final classification model.
Thus, it reduces overfitting issues and also makes the training
process faster.

As explored in Section IV, the competition datasets contain
missing values. There are several strategies to deal with
missing values such as filling-forward, filling-backward, mean-
value, or merely filling the missing values with zeros (or some
other values based on domain knowledge). The filling-forward
strategy means taking the most recent known value in the
past to fill the missing value. Similarly, the filling-backward
approach involves taking the closest known point after the
point as the value for the missing one. On the other hand, the
mean-value strategy takes the average value of the variable to
fill the unknown places.

In this work, we fill the missing values as zeros for two
main reasons. First, there are not many missing values in
these datasets (see Section IV). Second, we add the ‘sum’
statistic (as discussed in Section V-A), which already considers
the impacts of the missing values. Please also note that our
approach to deal with missing value and the two supporting
reasons do not rule out the possibilities to investigate the
impacts of the other strategies. They should be exciting future
directions to explore.

Figure 9 shows the summaries of our MLP neural network
consolidated after several experiments on our dataset. Besides
the output layer, it consists of one Dense layer with 300 hidden
units and other three Dense layers with 200 hidden units each.
Two Dropout layers are also used to tackle the overfitting
issue. Also, with the same reasons discussed in Section V-A,
we use F1 score on the validation set for early stopping
purpose and the log loss as the loss function. Specifically,
the best F1 score on the validation set is 0.6971 (w.r.t a log
loss of 0.2412). In addition, Figure 10 shows the confusion
matrix of the results applying only the generated MLP neural
network into the validation set.

Fig. 10. Confusion matrix of the classification results applying only MLP
neural network model to the validation set.

C. Logistic regression

Following a previous approach to this task [44], in tier 1 of
our solution, we also adopt an ordinal logistic regression model
for this problem. Mathematically, this ordinal model does not
forecast the class labels but predicts the probability of having
or not a flaring event given a time series of the observed solar
magnetic field parameters. Though it is conceptually simple
and algorithmically fast, experimental results confirm that it
is compelling in evaluating the probability of flaring events.

We use all the raw features (25 variables over 60 time-
steps) plus the other 175 statistical features (see Section V-A)
to train this model. Before training, we also replace missing
values with 0s (with the reasons discussed in Section V-B)
and scale the values of the variables to [-1, 1] range (to avoid
the case that one or some features dominate the others in our
prediction result). The F1 score on validation set for this model
is 0.69448 (w.r.t a log loss of 0.25788). Specifically, Figure
11 shows the confusion matrix of the classification results
applying this learned logistic model to the validation set.

Fig. 11. Confusion matrix of the classification results applying only logistic
regression model to the validation set.

D. LSTM neural network

LSTM is a type of neural network which allows the learning
model to remember history information when processing each
step in the sequential data. Therefore, it is considered as a
natural fit for this problem. In this case, the input data for our
LSTM model is a 3D array with the shape as the number of
objects (IDs), time series steps, and the number of features.
Specifically, fold 1 and fold 2 are used as training set, and
fold 3 is treated as validation set (for early stopping purpose).
Similar to training MLP neural network, missing values are
replaced by 0s, and the raw data are scaled to [-1, 1] range
before putting into the networks.

In learning any neural network model, finding a suitable
architecture is the key part. Liu et al., [27] suggest an in-
teresting architecture for this type of problem. The proposed
model comprises of an LSTM layer, an attention layer, two
fully connected layers, and an output layer. We tried a variety
of architectures, and from experimental results, we found a
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simpler architecture that seems to work well in this particular
problem. As depicted in Figure 12, besides the output layer,
this model consists of one LSTM layer (with 64 hidden units),
and one Dense layer (with eight hidden units). It also includes
a Dropout layer to tackle the overfitting issue.

We also use the log loss as the objective function, and
to void overfitting, we set early stop (early stop) as 20 and
validation metric is the F1 score. In other words, after 20
epochs, if the F1 score on the validation set does not increase,
the training stops. After stopping, it returns the model at the
epoch with the best validation F1 score.

Similar to the other tested models, we also validate this
LSTM model with the validation dataset. The best F1 score
is 0.6993 (w.r.t a log loss of 0.2823). Also, Figure 13 shows
the confusion matrix of the classification results applying only
LSTM neural network model to the validation set.

LSTM neural network by itself does not seem to be the best
fit for our particular problem. Specifically, the result is not as
good comparing to Boosting or MLP neural network models
described previously for this case. One possible implication
of this result is that the past information is not as useful as
we think, or we may need another way to incorporate time
and sequences information. In recent work, Cai et al., [6] also
stated that past information is not as useful in this case.

E. Tier 2

As discussed, we explored relevant algorithms for this
task, from simple one as logistic regression to sophisticated
ones such as LSTM and LightGBM. We also reviewed the
classification outcomes from individual best models selected
from each of the algorithms. It was tempting to devise an
ensemble to combine these models. Consequently, we added
a simple logistic regression model as another tier stacked on
the first one to connect the results from individual models in
tier 1. Specifically, we take four sets of probability outputs
from the four models in the first tier and generate the other
four corresponding label output sets (class labels as 0s or 1s
instead of probabilities for those values). These probability and

Fig. 12. Our LSTM architecture comprises one LSTM layer (64 hidden units),
two dense layers (one with eight hidden units, and another one for the output).
It also includes a dropout layer to tackle the overfitting issue.

Fig. 13. Confusion matrix of the classification results applying only LSTM
neural network model to the validation set.

label output sets add up to eight input features for training the
logistic regression model in the second tier.

In detail, we normalize probability outputs from an indi-
vidual model using percentile ranking 4 to make sure that the
output distributions from the validation set and submission set
are similar. It harms our results if we do not have similar
distributions for these two output sets. For instance, Figure
14 shows the sample output probability distributions of the
validation set (on the left) and the submission set (on the right)
applied to the MLP neural network at tier 1. We can see the
thicker tail toward 1.0 from the probability distributions of
the outputs from the validation set comparing to that of the
submission set. On the other hand, Figure 15 shows similar
distributions for the probabilities outputs from these two sets
after the normalization step.

Fig. 14. Distribution of the output probabilities applying to the learned MLP
neural network model on validation set (left) and submission set (right). The
distribution on the left has thicker tail toward 1.0.

Regarding producing labels from probabilities, we tune a
threshold for each model to produce the label predictions
from the predicted probabilities. We assign class label 1 for
an output probability, which is higher than this threshold and
0 otherwise. Table I summarizes the four thresholds and the
corresponding F1scores and log losses for the four models in
tier 1. These thresholds are tuned in such a way that maximizes
the F1 score applied to the validation set and at the same
time satisfying a second condition about similar percentages
of class 1. The latter requirement means that the percentage of

4https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.rank.html
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Fig. 15. Distributions of the output probabilities applying to the learned MLP
neural network model on validation set (orange) and submission set (blue)
after applying percentile ranking.

TABLE I
OUTPUT PROBABILITY TO CLASS LABEL THRESHOLDS AND

CORRESPONDING F1 SCORES AND LOG LOSSES.

LightGBM MLP NN Logistic LSTM NN
Threshold 0.16 0.37 0.5 0.28
F1 score 0.7174 0.6971 0.6945 0.6993
Log loss 0.2656 0.2412 0.2579 0.2823

class 1 in predicted results for the submission fold is similar to
that of the other known folds. The reason is that even though
the class 1 percentage in the submission fold is unknown, it is
safe to assume that this percentage is relatively similar to those
for training and validation sets, as discussed in Section II.

After training the logistic model in the second tier, we also
use a similar strategy discussed above to tune the prediction
label threshold. Meaning we optimize the best F1 score on the
validation set, but at the same time having the percentage of
the predicted class 1s in the submission set as similar to that
in the validation set as possible. From experimental results,
the best threshold for converting probability outputs from this
logistic regression model (in the second tier) to labels is 0.42.
Also, the resulted F1 score is 0.7276 (w.r.t a log loss of
0.2664) on the validation set. We can see that this score on the
validation set is higher than that of any individual model at
tier 1, meaning that the ensemble performs well in combining
the built models.

Finally, our solution has F1 score of 0.65833 for the
submission fold in the public board and F1 score of 0.66933
for the submission fold on the private board.

VI. IMPLEMENTATION

The solution is implemented as Jupyter Notebooks [23]
using several Python machine learning and data visualiza-
tion packages such as lightgbm, sklearn, keras, matplotlib,
and seaborn to name but a few. The source codes, and
experiemental results are hosted on the Github page of
the project: https://github.com/iDataVisualizationLab/C/tree/
master/solar flare bigdatacup.

VII. CONCLUSION

In this paper, we propose an ensemble approach to solar
eruptive activity prediction problem with five models orga-
nized into two tiers. The types of models themselves are the
results of our study concerning relevant approaches to solar
flare event prediction problem and the recent advancements
in the machine learning field. Specifically, there are four
models in the first tier (a LightGBM model, an MLP neural
network model, an LSTM neural network model, and a logistic
regression model), and another one logistic regression model
in the second tier to assimilate the previous models. The
architecture details and hyper-parameters of the models are
learned from experimental results using the given data. In
particular, we divided the competition data into three sets,
namely training set (fold 1 and fold 2), validation set (fold
3), and submission set (fold submission). The training set and
validation set are used to explore and train the models in
our solution before applying it to the submission set for the
competition.

In the future, there are several directions worth exploring,
such as using a convolution neural network (CNN) to pre-
process data before feeding into an LSTM neural network to
learn the model or to explore more models such as random
forest or SVM models, or even adding more tiers. Additional
worth trying directions would be testing other loss functions,
optimizing other scores such as TSS and HSS (Heidke Skill
Score), utilizing different techniques to handle the imbalance
of classes in this problem.
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