2020 IEEE International Conference on Big Data (Big Data) | 978-1-7281-6251-5/20/$31.00 ©2020 IEEE | DOI: 10.1109/BigData50022.2020.9378027

2020 IEEE International Conference on Big Data (Big Data)

Road Damage Detection and Classification with

Detectron2 and

Vung Pham
Computer Science Department
Texas Tech University
Lubbock, USA
vung.pham@ttu.edu

Abstract—The road is vital for many aspects of life, and road
maintenance is crucial for human safety. One of the critical tasks
to allow timely repair of road damages is to quickly and efficiently
detect and classify them. This work details the strategies and
experiments evaluated for these tasks. Specifically, we evaluate
Detectron2’s implementation of Faster R-CNN using different
base models and configurations. We also experiment with these
approaches using the Global Road Damage Detection Challenge
2020, A Track in the IEEE Big Data 2020 Big Data Cup Challenge
dataset. The results show that the X101-FPN base model for
Faster R-CNN with Detectron2’s default configurations is efficient
and general enough to be transferable to different countries in
this challenge. This approach results in F1 scores of 51.0% and
51.4% for the testl and test2 sets of the challenge, respectively.
Though the visualizations show good prediction results, the F1
scores are low. Therefore, we also evaluate the prediction results
against the existing annotations and discover some discrepancies.
Thus, we also suggest strategies to improve the labeling process
for this dataset.

Index Terms—Object detection, Detectron2, Road damage
detection, Faster R-CNN and classification, Transferable learning

I. INTRODUCTION

The road is crucial in different aspects of life, from eco-
nomic development and social benefits to safety. Therefore,
road maintenance is vital for all countries in the world. One
of the road maintenance tasks is to accurately detect damages
and then devote efficient repairs in a timely manner. However,
for most countries, road crack detection and classification
are currently based on human manual works or expensive
sensors. Therefore, automatic detection and classification of
road damage types are getting popular recently. Also, deep
learning, with its recent advancements, is gaining traction and
has state-of-the-art results in various computer vision tasks [1].
Therefore, many works in the literature use deep learning
approaches to detect and classify road damages.

Using deep learning for road damage detection and clas-
sification often involves three sub-tasks: 1) collecting image
data, 2) creating labels for the data, and 3) building deep
learning models from the labeled data. While collecting data
can be done efficiently using mobile devices with GPS and
camera [2], the labeling process takes time, and the detec-
tion/classification results are still limited. Also, the models
learned from the data coming from one country often are not

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 5592

Chau Pham
Computer Science Department
Texas Tech University
Lubbock, USA
chaupham@ttu.edu

Faster R-CNN

Tommy Dang
Computer Science Department
Texas Tech University
Lubbock, USA
tommy.dang @ttu.edu

generalized enough to be transferable to different countries [3].
Additionally, providing bounding boxes and labels for road
damages is error-prone and demands a massive amount of
human labor to have accurate results.

Therefore, this work explores state-of-the-art object de-
tection methods to find general road damage detection and
classification model that is usable for different territories. We
then apply the selected approaches to the Global Road Damage
Detection Challenge 2020, A Track in the IEEE Big Data 2020
Big Data Cup Challenge [4] dataset. Furthermore, we also
evaluate the quality of the currently labeled data and propose a
strategy to generate more labeled data. Thus, our contributions
are:

o Exploring current state-of-the-art object detection meth-
ods and their applicability to road damage detection and
classification tasks.

o Experimenting with these approaches using the Global
Road Damage Detection Challenge 2020 dataset to find
one single model that is efficient and can be transferable
to different territories.

e Visualizing the prediction results and qualitatively evalu-
ating the existing annotations follows by giving sugges-
tions to improve the labeling process for this dataset.

II. DATASET AND EVALUATION METHOD

The dataset used in this work is from the Global Road
Damage Detection Challenge 2020 [4]. This dataset consists
of one train set (train) and two test sets (fest! and test2).
Specifically, the training and testing sets contain road damage
images, bounding boxes, and damage types (for training set)
from three countries (i.e., Czech, India, and Japan). Fur-
thermore, for this dataset, there are four types of labelled
road damage types namely Longitudinal Crack, Transverse
Crack, Aligator Crack, and Pothole (labelled D00, D10, D20,
and D40, respectively). For this section’s brevity, we defer
further details about the number of images and damage type
distributions in the individual countries and the whole dataset
to Section IV-A.

For this challenge, the evaluation method is based on the
F1 score defined to balance the precision (p) and recall (r).

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

These are defined as:
— Cd

— —Cd
P—Pda

r= 22
Ag’

where Cy, P;, and Ay are the numbers of correctly predicted
damages, the predicted damages, and all the ground-truth
damages from the evaluating set, respectively. Furthermore,
the definition of correctly predicted damage has two criteria.
They are 1) the predicted bounding box must match, and 2)
the predicted label is correct. The latter is obvious, and the
former is defined by the Intersection over Union (loU) score,
which is defined as follows:

area(P, N Gyp)
area(Py, U Gy)

Pl — 2pr
p+r

IoU =

where P, and G}, are a predicted box and a ground-truth box,
respectively. Also, area(P, N Gp) and area(P, U G}) means
the areas of the intersection and the union between the two
boxes, correspondingly. In this case, if JoU >= 0.5, then it
is a match, and it is not otherwise.

III. RELATED WORK

Object detection using deep neural networks is an emerging
field, and it is not the purpose of this work to review all the
recent results in this field. Also, object detection techniques
are continually evolving, and comparisons might be outdated
quickly. Instead, we briefly survey families of current state-
of-the-art object detection methods in general and methods
related to road damage detection and classification specifically.

A. Deep learning based object detection

Deep learning-based object detection is gaining initial suc-
cess, and there are many works in the literature regarding
this. We refer interested readers to [5] for a good survey of
these methods. Recent techniques are generally related to two
prominent families, namely Region-Based Convolutional Neu-
ral Networks (R-CNNs) and You Only Look Once (YOLO).

Ross Girshick et al. [6] propose R-CNNs approach with
three main modules. The first one is a region proposal mod-
ule that generates candidate regions (bounding boxes) using
computer vision techniques. The second one is the feature
extraction module. This second module uses convolutional
neural networks to extract the features from the candidate
regions. Finally, the last module is a classifier that predicts the
classes of the proposed candidates using the extracted features.

R-CNN s takes a long time to train because training is done
in multiple stages. Besides training, the prediction stage is
also slow. Therefore, Girshick proposes another model called
Fast R-CNN [7] to tackle these issues. Fast R-CNN is trained
as a single model instead of three separate modules. This
architecture takes the images and proposes candidate regions,
then passes them through a popular, pre-trained image classifi-
cation model (e.g., ResNet [8], VGG-16 [9]) to extract features
from the candidates. The extracted features then undergo a
Region of Interest (Rol) pooling layer, followed by two fully
connected layers. Finally, there are two other fully connected

5593

heads for bounding box regression and label classification
purposes.

Though Fast R-CNN improves the training and predicting
time, it still needs the region proposal as the inputs. In other
words, the region proposals for each image still needs to
be done separately (e.g., using image processing techniques).
Therefore, Ren et al., [10] propose Faster R-CNN to tackle
this issue. Its main improvement is the ability to incorporate
region proposals as a part of the final model using Region
Proposal Network (RPN). In other words, there are two smaller
networks in this architecture. The first one is a Region Proposal
Network (RPN), and the second one is the Fast R-CNN.
These two sub-networks are trained simultaneously, though for
two different tasks: 1) region proposals and 2) bounding box
classification and regression. These strategies help to improve
the training and object detection time and accuracy.

Another famous family of object detection is YOLO
with different versions such as YOLO [11], YOLOv2 [12],
YOLOvV3 [13], and YOLOv4 [14]. Different YOLO versions
may differ in terms of architectures and techniques used.
However, generally, it involves a single neural network, with
the input being the images and ground-truth boxes/segments
and labels (while training). The outputs are the bounding boxes
and corresponding labels of the detected objects from the
image. Specifically, it divides an image into a grid of cells.
Feature extracted from each cell is used to predict objects
with centers of the bounding boxes that fall into the cell. The
advantage of this method is that it is faster to train and predict.
However, the benefit comes with a slightly lower accuracy
compared to Faster R-CNNss.

While YOLO mainly has its advantage for speed and
Faster R-CNN is better at accuracy, Single Short Detection
(SSD) [15] allows a better balance between speed and ac-
curacy. SSD runs a convolutional neural network on input
image only one time and computes a feature map. It also uses
anchor boxes of different sizes and aspects as Faster R-CNN.
Regarding bounding box sizes, SSD predicts them at different
convolutional layers. The reason is that convolutional layers
have different receptive fields of the inputs. In other words,
the deeper a convolutional layer is, the larger its receptive field
will be. Thus, the deeper convolutional layer features are used
to predict larger bounding boxes and vice versa.

B. Deep learning based road damage detection

Deep learning is gaining success in various areas such as
efficient manufacturing and system operations [16], estimating
visual features [17], and solar flare event predictions [], to
name but a few. Road damage detection and classification
is no exception. Various works in the literature use deep
learning for these tasks. With the help of GPS- and camera-
enabled mobile devices, it is now relatively easy to collect
road images for this purpose. For instance, Maeda et al., [2]
propose using a smartphone placed on a car’s dashboard to
collect pictures of road cracks, label them, and make them
available for the public. Based on this dataset, Yanbo Wang
et al., [18] propose to use Faster R-CNN and SSD with

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

pre-trained ResNet and VGG as bases to tackle the damage
detection and classification tasks. Also, they aggregate up to
14 Faster R-CNN models and 2 SSD models to improve the
detection result. Similarly, Wenzhe Wang et al., [19] also
propose to use Faster R-CNN with data exploration step to
adjust appropriate hyperparameters such as anchor boxes and
ratios. Furthermore, they use different augmentation types
(such as contrast transformation, brightness adjustment, and
Gaussian blur) to improve their results.

On the other hand, [20] uses YOLOv3 with darknet53 as the
base model to tackle these tasks. They also experiment with
two augmentation strategies. The first strategy is to generate
more images for damage types with lower number occurrences
using brightening or gray-scale, and the second strategy is
to use cropping. However, in general, augmentations do not
help. Additionally, Kluger et al., [21] utilize Faster R-CNN,
RetinaNet [22], and Convolutional Neural Network combined
with Random Forest to solve the tasks. The use of Random
Forest is due to the assumption that it helps in case there
are few samples in the training data [23]. Furthermore, they
propose (without validating the impacts of the proposal) to use
Cycle-Consistent Adversarial Networks (CycleGAN) [24] for
data augmentation. Their experiments also show that Faster R-
CNN works best for road damage classification and detection.

In a recent study, Maeda et al., [25] use Generative Ad-
versarial Nets (GAN) [26] to generate damages with a lower
number of occurrences to improve the detection results for this
specific type of damages. Specifically, they use Progressive
Growing GAN (PG-GAN) [27] to artificially generate more
damages of pothole damage type and improve prediction
results for this type of cracks in Japan. The reason is that
Japan has a low number of pothole damages. Furthermore,
they also use Poisson blending [28] to place the generated
damages to the existing images to make the artificial patches
look more natural to its containers. In another work, Arya et
al., [3] suggest that the current techniques are not transferable
from one country to another. Therefore, such a model is needed
to save data collection, data labeling, and training time.

All in all, these works show that Faster R-CNN seems to be
a useful technique for road damage detection and classification
with a good trade-off between time and accuracy. These works
also indicate that except when we only focus on a damage type
with a small number of occurrences (i.e., pothole damages
in Japan), data augmentations (other than the obvious ones
such as horizontal flipping and resizing) do not generally help.
Furthermore, several of these works use ensembles to improve
their prediction results. Though ensembles help improve the
results, they also significantly increase training and prediction
time and are not encouraged in this year’s challenge.

IV. METHODOLOGY

Our general methodology is that we start with the data
exploration stage to understand the dataset. We then proceed
by splitting the training dataset further into the training and
evaluation sets. The validation enables us to evaluate the

5594

TABLE I
NUMBER OF TRAINING ITERATIONS, TEST SCORE THRESHOLDS, AND F1
SCORES FOR DIFFERENT EXPERIMENTS.

R101 X101 X101+Augs | X101+SRs
Converge iteration | 85,000 105,000 135,000 70,000
Score threshold 0.65 0.71 0.51 0.71
F1 Score 0.5285 0.5425 0.5398 0.5451

R101: Model with R101 as the base model

X101: Model with X101 as the base model

X101+Augs: Model with X101 as the base and uses augmentations
X101+SRs: Model with X101 as the base and uses custom sizes and ratios
Converge iteration: The iteration at which the model provides best result
Score threshold: Test score threshold

F1 Score: F1 score of the predicted results on evaluation set

hyper-parameters for our architectures quantitatively. Regard-
ing deep learning model architectures, we start with the com-
monly used model architectures for road damage detection and
classification tasks. We then proceed with strategies to improve
the base models, such as changing hyper-parameters, train data
augmentations, and test time augmentations. It’s worth noting
that ensembles and individual models for individual countries
would have better prediction results. However, it is restricted
by the challenge that we should have a single-algorithm and
single-model approach. Therefore, we do not attempt these
directions.

Table I summarizes the main experiments that we have made
with their corresponding training iterations (i.e., converge iter-
ations at which it produces the best results on evaluation data),
test score threshold (i.e., the threshold used to decide if road
damage exists), and corresponding F1 Scores on the evaluation
dataset. The following sections detail data exploration with
train/evaluation splits and these experimented models.

A. Data exploration and train/evaluation splits

This dataset consists of one training set (train) and two
test sets (testl and fest2). The training set contains 21,041
images (2,829, 7,706, and 10,506 for Czech, India, and
Japan, respectively). The two test sets contain 2,631 and
2,664 images, correspondingly. There are 34,702 ground-truth
labels (bounding boxes and damage types) in the training set.
Specifically, Figure 1 shows the damage type distributions
(of the four corresponding types) over the three countries. In
general, Japan has higher numbers of images and damages, and
the pothole damage type has the lowest number of occurrences.

On the other hand, India has fewer images and damage
labels. Also, DO4 is the one with the highest number of
occurrences, while there are only a few DOl damages in
India. Finally, Czech has the fewest number of images and
damage samples (a total of 1,745 labels). It’s worth noting
that due to different numbers of images, different damage
types distributions over different countries, it is difficult to
have a transferable model for all three countries. In other
words, having different models for different countries (with
a sufficient number of images like Japan and India) should
have better accuracy compared to a single model for all three
countries.

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

Damage Type Distributions

6,000 1 N B Czech
3 India
5,000 | Japan
o
5 4,000 N
3 N
[
2 3,000 -
£
a
2,000 A N\ \ N
1,000 § § §
0- T T T T
D00 D10 D20 D40
Damage Type
Fig. 1. Damage type distributions over three countries (Czech, India, and

Japan). It’s observable that different countries have a different number of
damages for the four types.

We also split the training dataset into training and validation
sets with the stratify as the origin of the damage types (i.e.,
country). Specifically, we keep 90% of the images for training
and 10% for evaluation. This 10% for the evaluation split
is reasonable because it results in 1,221 images in this set.
More than a thousand images are general enough to evaluate
the performance of the learned models. This evaluation set is
used to quantitatively evaluate our model’s performance and
the hyperparameter selection process during training (such as
prediction score threshold and the number of train iterations).
Figure 2 shows the distributions of the damage types after
splitting. Generally, though different countries have different
damage type distributions, the combined distribution has a
better balance among damage types. Also, using the origins
of damage types as a stratified field seems sufficient since the
train vs. evaluation distributions are somewhat similar.

Damage Type Train/Evaluation Distributions

Train

7,000 A B Evaluation

6,000 -

5,000 A

4,000 A

Damage Count

3,000 A

2,000 A

1,000 A

Damage Type

Fig. 2. Damage type distributions of the training dataset after splitting it into
training and evaluation sets using country as stratify field. It is observable that
the train and evaluation sets have relatively similar damage type distributions.

5595

B. Base models

As discussed in Section III-B, most of the successful road
damage detection and classification techniques trained using
the Road Damage Detection dataset (version 2018) use the
Faster R-CNN technique. Therefore, we first explore this
approach to tackle this year’s challenge. Instead of developing
a Faster R-CNN model from scratch, we use Detectron2 [29] to
speed up our development cycle. Detectron2 is Facebook Al
Research’s next-generation software system that implements
state-of-the-art object detection algorithms.

It is also a common practice to use a base model pre-trained
on a large image set (such as ImageNet [30]) as the feature
extractor part of the network. Detectron2 provides many such
base-models [31]. However, for Faster R-CNN, two commonly
used base models are R101-FPN! and X101-FPN?. We select
to explore these two pre-trained models because they have
good Faster R-CNN box Average Precision (AP) compared
to others. They are 42% and 43% on the pre-trained dataset
(ImageNet), respectively. Though X101-FPN has better box
AP on the ImageNet benchmark, it takes longer to train/predict
and might be overfitting in some cases. That is the reason why
we also explore R101-FPN.

Figure 3 depicts three main components of a Faster R-
CNN model. They are the Backbone network, Region proposal
network, and Box Head. The backbone network extracts
features from the input image. In this case, we use the Feature
Pyramid Network (FPN) types of the backbone. Therefore, it
pulls the features at different scales for better predictions of
anchor boxes of various sizes. The Region Proposal Network
detects object regions from multi-scale features. It proposes the
regions with objectness scores (how likely there is an object
in a region) and the anchor deltas (centers and sizes relative to
the picture size). The extracted features and box proposals are
passed through an Rol Pooling (Region of Interest Pooling)
layer to give standard inputs for the Box Head layer. Finally,
Box Head is another neural network to predict the fine-tune
bounding box locations and box classifications.

There are many hyper-parameters to be tuned while train-
ing a Faster R-CNN model. Thus, it is nearly impossi-
ble in terms of time and computation resources to explore
all the configurations. Therefore, we first stick with the
default and obvious, common-sense configurations. Specifi-
cally, we set ¢fg.SOLVER.REFERENCE_WORLD_SIZE (num-
ber of GPUs) to 2, both ¢fg. SOLVER.IMS_PER_BATCH (im-
ages per batch) and c¢fg. DATALOADER.NUM_WORKERS to
16, ¢fg.SOLVER.BASE_LR (base learning rate) as 0.00025,
and c¢fg MODEL.ROI_HEADS.NUM_CLASSES (number of
classes) is 4 (as correspond to four different types of damages).
All other configurations are kept as default from Detectron2.
Interested readers can refer to Detectron2’s documentation
page® for further details about these default configurations.

! https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_
101_FPN_3x/137851257/model_final_f6e8b1.pkl

2https://dl.fbaipublicﬁles.com/detectronZ/COCO—Detection/faster_rcnn_X_
101_32x8d_FPN_3x/139173657/model_final_68b088.pkl

3https://detectron2.readthedocs.io/modules/config.html

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

Backbone network

sainjea}

sainjeay
sainjeay

i 4 -Objectness i
! ,i - Anchor deltas |
| 1
| — i
i 4>i i
i i :
b= T

|

§ i box proposals

g i

a : L
Box Head
i - Class logits
I
|
T
I

- Bounding box predictions i

Rol Pooling
'BER

Fig. 3. The architecture of a Faster R-CNN model with three main components. The backbone network to extract features from the input image. The region
proposal network to find box candidates with objectness scores and box deltas. The Rol Head to make the final box classifications and the bounding box

predictions.

As shown in Table I, although it is faster to train a Faster
R-CNN using R101-FPN as the base model, it has a slightly
lower accuracy than using X101-FPN as the base model
(52.85% vs. 54.25% on the evaluation set at the test time
prediction score thresholds of 0.65 and 0.71, respectively).
Specifically, it takes 0.82 seconds to train an iteration when
using R101-FPN while it takes 1.67 seconds when using
X101-FPN (using the specified configuration). The former
also takes fewer iterations to converge than the latter (85,000
vs. 105,000). It takes time to do all the experiments with
these models. Therefore, in the next sections, we only explore
further experiments using the X101-FPN as the Faster R-CNN
base.

C. Data augmentations

As discussed in Section IV-A, though the training dataset
has a good number of images and damage types, they are
imbalanced among damage types and are distributed differ-
ently for different countries. Therefore, besides the apparent
augmentation techniques (such as image resizing and horizon-
tal flipping, called ‘default augmentations’ hereafter), we also
explore other augmentation techniques. Specifically, Maeda et
al., [25] suggest that using GAN to generate synthetic damage
types with fewer occurrences helps predict that specific type of
damages (e.g., ‘pothole’ type of damages). Generating images
using GAN often involves three processes: 1) generating a
patch for damage, 2) finding places in an existing image to
blend the patch, and 3) making the synthetic patch as natural
to (as if it really belongs to) the container image as possible.

The synthetic damage patch generation step using GAN
takes a long time to train. Additionally, we can manually place
the patches to an existing image [25] or use another object
detection model to detect the road areas and automatically
position the artificial patches [21] to these areas. However,
both of these approaches take time to complete. Therefore,

5596

in the following sections, we detail our strategies to quickly
evaluate the efficiency of this augmentation method before
developing and training complicated models for these tasks,
in case this direction is promising.

Instead of using GAN to generate the synthetic damage
patches, we randomly extract and select existing patches using
the given ground-truth boxes. We also apply some simple
augmentations to the selected patches (such as horizontal
flipping, slight rotating, or scaling) to increase the varieties of
the damage patches. Furthermore, we also randomly sample
the locations from all existing damages of the same type to
position the artificial patch into an existing image. The reason
is that we assume that similar damage types would appear in
similar locations. This heuristic does not always hold, but it
would be fast and easy to implement.

Furthermore, instead of using Poisson blending [28] to place
the synthetic damage patches into an existing image, we use a
fast color transfer technique [32] to make the artificial patches
look more natural to the placing image. Figure 4 shows an
example of the resulted image. DOI (green box) and D10 (blue
box) damage boxes are the real ones, while D40 (yellow box)
is the synthesized one. Though not all the artificial patches
generated this way look natural or in the correct place, it
helps to quickly generate augmented data and check if this
augmentation strategy worth exploring.

Furthermore, in this case, we are not focusing on any spe-
cific type of damages but would like to balance the number of
damages among the four damage types per country. Thus, we
set different augmentation probabilities for different damage
types in each country. Specifically, based on data exploration
as shown in Figure 1, we set the augmentation probabilities
as in Table II. Finally, we train the model (with the selected
architecture described above with X101 as the base model)
using the augmented data. It takes longer training iterations to

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Damage augmentation: D00 (green-box) and DI0 (blue box) are
the real damages. D40 (yellow box) is the augmented one. This patch was
randomly selected from existing D40 damages then slightly modified and
placed into a position randomly sampled from all positions of this crack type.

converge, and the resulted model does not perform better. This
result might indicate that though individual countries may have
different numbers of damages per type, the combined dataset
(with three different countries) does not pose a big issue about
damage type unbalancing (as shown in Figure 2).

TABLE I
AUGMENTATION PROBABILITIES FOR DIFFERENT DAMAGE TYPES AND
DIFFERENT COUNTRIES.

Country | D01 | D10 | D20 | D40
Czech 0.2 0.2 0.0 0.4
India 0.3 0.5 0.2 0.0
Japan 0.0 0.6 0.3 0.5

We also experiment with several other augmentation meth-
ods such as random cutout, random brightness/contrast, and
cropping image augmentations, using albumentations package
[33]. Specifically, for cutout augmentation, we randomly set
up to 8 random areas with maximum sizes of 32 x 32 with
the random probability of 0.5 (i.e., there is a 0.5 chance of
augmenting for every one of the eight cutout areas). For bright-
ness/and contrasts, we experiment both with a limit of 0.3 and
a random probability of 0.5. Also, for cropping, we set the
min and max sizes to 512 and 540, respectively. The cropping
probability used is 0.1. However, all these augmentations take
a higher number of training iterations to converge, and none of
them help to increase the validation accuracy. Specifically, as
shown in Table I, when we use these additional augmentations
(i.e., default augmentations, artificial patches, random cutout,
random brightness/contrast, and cropping), it takes 135,000
training iterations to converge instead of 105,000 for the
X101 model with default augmentations. Moreover, its resulted
accuracy is slightly lower (53.98% vs. 54.25%, respectively).

The cutout augmentation technique does not work might
due to the reason that there are already built-in dropout
layers in the Detectron2 Faster R-CNN implementation. The
brightness/contrast technique does not help improve the per-
formance, which might indicate that the training data itself
already contains images with different light and weather condi-
tions. In other words, they already have images with different
brightness/contrast levels. Lastly, the cropping augmentation
technique does not work might due to the reason that Faster
R-CNN uses only the regions of interests of each training

5597

image (i.e., ground-truth boxes) rather than the entire image
[20].

We explore also test time augmentation (TTA). Specifically,
we apply flipping, resizing, and brightness/contrast augmenta-
tion techniques. We only apply horizontal flipping for flipping
augmentation since the vertical flipping does not make sense
in this case. For resizing, we use the following sizes (400,
500, 600, 700, 800, 900, 1000, 1100, 1200). TTA takes a
longer time to make predictions because they have to make
predictions for several augmented images, then combine them
to produce final predictions for each image. However, neither
of these approaches helps to improve prediction accuracy.
Specifically, TTA reduces the F1 score for the model with
X101 as the base and default augmentations to 50.73% (from
54.25% when not using TTA).

D. Other hyperparameters

Batch normalization is one of the breakthroughs in deep
learning. It allows faster and more stable training by making
the output distribution from one layer stable before forwarding
to the next layer. This strategy also helps gradient descent
by avoiding vanishing gradients. It normalizes the previous
layer’s output by subtracting the empirical means over the
batch divided by the observed standard deviations. Therefore,
there are options to change the pixel means and standard
deviations over the three image channels (i.e., Red, Green,
and Blue).

Since Detectron2 recommends not to change the
standard deviations, we look into the pixel means
(cfg. MODEL.PIXEL_MEAN) from all the images in

training set as [122.190,122.639,117.788] (in Blue, Green,
and Red channels, respectively) and use them instead of
the default values (generated from ImageNet dataset) as
[103.530,116.280,123.675]. However, this approach does
not help to enhance performance. This result might indicate
that the calculated means for this dataset and those from
ImageNet are not very different. Another indication would
be the base model was trained with the default means and
standard deviations, so changing them impacts the extracted
features from the base model used.

Furthermore, Faster R-CNN has a module to generate
anchor boxes. These anchor boxes are generated with dif-
ferent sizes and ratios. Therefore, we explore our data to
find appropriate box sizes and ratios. Specifically, Figure
5 shows the histogram of the areas of all ground-truth
bounding boxes for the training set’s road damages. It is
observable that the areas are distributed mostly around 0
to 400 squared pixels. Therefore, we set the anchor gen-
erator sizes (cfg.MODEL.ANCHOR_GENERATOR.SIZES) to
[[32,64, 128]] instead of the default [[32, 64, 128, 256]].

The ratios of the anchor boxes are calculated
by their heights over their widths. Therefore, we
also explore the height/width distribution of all
the ground-truth bounding boxes. It 1is observable

from Figure 6 that a high number of the ratios are
distributed at the lower end. Therefore, we set the ratios

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

Bounding box areas distributions (histogram, bins=20)

8,000 —
7,000 1
6,000 1
5,000 1

4,000

Area count

3,000
2,000

= Ml

400
Area size

600 800

Fig. 5. Bounding box area distributions using a histogram with the number
of bins as 20 (range of a bin is approximately 45.6). It is observable that the
areas distributed mostly around O to 400 squared pixels.

(cfg. MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS)
to these values [[0.1,0.5,1.0,1.5]] instead of the default
[[0.5,1.0,2.0]] ratios. Training our model with these
parameters does not help to improve the results much.
However, it helps make the learning process converges faster.
Specifically, as shown in Table I, it converges around the
iterations 70,000 instead of 105,000 and the accuracy is at
54.51%, which is similar to that of the model with X101
base and default configurations. These results indicate that
specifying appropriate sizes for the anchor boxes helps the
learning speed. However, the model is complicated enough to
learn the boxes though the candidates are not very close to
the predicted ones.

Bounding box ratios distributions (histogram, bins=30)

10,0004 _

8,000

6,000 -

Ratio count

4,000 -

2,000 A

75 100 125 15.0

Ratio (height/width)

00 25 50

Fig. 6. Bounding box ratios (height/width) distributions with the number of
bins as 30 (the width of a bin is approximately 0.55). It is observable that
this distribution is skewed toward the lower end.

E. EfficientDet model

As discussed, the object detection research field is emerg-
ing, and related techniques evolve consistently. Specifically,
Google Brain team recently published EfficientDet [34], which

5598

claims to achieve a state-of-the-art result on Common ob-
jects in context (COCOQ) test-dev [35]. Therefore, we also
implement and train a model using EfficientDet. However, the
prediction result is not as good as Faster R-CNN. Though it
takes a similar amount of time to train, it does not produce
a better prediction performance. This result might indicate
either EfficientDet is not suitable for this dataset or need more
experiments to tune its parameters for this specific case.

V. EVALUATIONS AND SUGGESTIONS

We also visualize the predicted bounding boxes with corre-
sponding labels and scores to qualitatively evaluate the results.
In general, predictions and ground-truth match reasonably
well. However, we also discover several discrepancies and
found some wrong/missing ground-truth bounding boxes. Fig-
ure 7 shows a few of these discrepancies. The red boxes
are ground-truth, and the blue boxes are predicted ones. The
predicted boxes also have corresponding labels and prediction
probabilities (ranging from 0 to 1.0 exclusively as low to high
confidence of having a road crack within the box). We only
show three examples in this case, and we also crop and keep
only the lower parts of these pictures due to space limitations.
The pixel numbers (on the axes) allow the interested readers to
identify these regions in the original images correspondingly.
For clarity of these pictures, we recommend interested readers
to check these pictures in their original sizes from the training
folder using the image file names listed on top of the pictures.

Specifically, the first picture is Japan_008976, while the
D00 prediction matches the ground-truth, another detected
damage of type D20 is obvious but is not in the annotations
provided by the dataset. On the other hand, there are two
horizontal cracks detected with high confidences in the picture
Czech_001957, but there are no annotations for these in the
training set. Finally, there is a pothole (D40) damage detected
in Japan_012722 without a corresponding ground-truth. It
is also worth noting from this picture (Japan_012722) that
there are currently two overlapping bounding boxes with the
same damage type (D20), but one with 0.99 and another
with 0.60 confidence scores, respectively. The predictive score
threshold and the non-maximum suppression step will remove
the one with a lower prediction score. Thus, the predicted one
bounding box for D20 matches the ground-truth one.

In many cases, especially in darker light conditions, machine
learning models can perform better than humans. For instance,
Figure 8 shows the picture India_009632 from testl set. Our
model predicts that there is a D02 type of damage in the
picture (the red box in panel (A)). However, this is not clear
to humans. We might think that was a wrong prediction as
one can visibly check in the top panel. However, it turns
out to be a correct prediction when we set the brightness of
this picture to 150 (e.g., using Photoshop) and zoom into this
region (200%), as shown in panel (B). Similar story happens
to image Japan_012412 and the detected DOO damage type in
the panels (C) and (D).

These examples imply that the human manual labeling
approach might not be sufficient for this type of dataset. In

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

Japan_008976

Czech001957

500

100 200 300 500

Japan_012722

400

Fig. 7. Examples of missing bounding boxes and labels in the training set. In
this case, the red boxes are ground-truth, and the blue boxes are the predicted
ones. Both have corresponding labels (for damage types), and there is also
the predicted scores for the predictions. It is observable that there are road
cracks predicted, but they are missing in the evaluation set.

other words, there should be a combination of both human
and machine learning supports for this task. This missing
label issue (due to human labeling) for the training set would
be acceptable. However, it would be inaccurate to evaluate
the performance of models if it happens to the testing sets.
Therefore, we suggest that the test sets should be brightened
and zoomed before the human labeling process. After labeling,
these images can then be converted back to their original
brightness and sizes.

Deep learning needs a massive amount of labeled data, and
manual labeling of road damages takes so much time and is
error-prone. The reasons for errors might due to different light
conditions, precisions of the bounding boxes are difficult to
set, or even the confusion between damage types. Kluger et
al., [21] suggest using a learned model to predict the bounding
boxes and classify damage types of the unlabeled, collected
images. These predictions then undergo the human manual

5599

(A)

India_009632

Q) Japan_012412

)

Fig. 8. Examples of the case that the machine learning model outperforms
humans. Panel (A) shows that our machine learning model detects a D02 type
of damage in the image India_009632, and it is not visible to humans. It is
only perceptible when we change the brightness of the picture and zoom into
the region, as in panel (B). Similar story happens to the image Japan_012412
for damage type D00 in panels (C) and (D).

checks to validate/change the bounding boxes or the labels.
However, it still takes time, and there is a lot of room for
errors with human manual label checks. Figure 9, shows an
example of such mistakes. Image Japan_002970 (from the
train set) has a wrong pothole damage bounding box. This
wrong label is obvious to humans and less clear to machine
learning models. This type of error also indicates that several
labels in this current training set were generated automatically
and did not get validated carefully by humans. This error
would also indicate that the labeling process depends on one
model learned on the initial limited amount of data.

On the other hand, in a recent study, Xie et al., [36] claim
to have state-of-the-art ImageNet classification results using
self-learning with noisy student technique. We suggest using
this approach with the following steps. First, train a model
on existing images with labeled bounding boxes and classes.
Use it as a teacher to generate annotations for other unlabeled
images. Combine the newly predicted annotations (with higher
confidences) with the existing annotations, then train a larger
model called a student model. Use this learned student as a
teacher and repeat the process. This approach incrementally

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

Japan_002970 with a Pothole

Fig. 9. An image (Japan_002970) with wrong pothole damage bounding
box in the training set for Japan. This mistake is obvious to humans and
less clear to machine learning models. Thus, it might indicate that a machine
learning model generates this label, and the error was slipped through the
human quality check step.

increases the labeled data instead of training on a single model
then uses that single model to predict labels as in the previous
approach.

It would always be useful to finally pass the pseudo,
predicted labels through another human inspection to validate
or adjust the bounding boxes and labels as a quality check.
However, it’s worth noting that one should also change the
brightness and zoom into the predicted regions for better qual-
ity checks if they are not apparent to humans. These cases can
be done manually or detected (using overall light conditions)
automatically adjust the pictures to help the validation process.

VI. SELECTED MODEL, RESULTS, AND LIMITATIONS

We selected Faster R-CNN with X101-FPN and Detec-
tron2’s default configurations as the architecture to tackle the
tasks of this competition. Though this approach (named as
‘X101’ in Table I) takes a little longer to train and slightly
lower accuracy compared to the model ‘X101+SRs’ (the
same model but uses custom ratios and sizes for the anchor
boxes), it is general and is easier to implement. Thus, it
is more practical and easy to transfer to different datasets
from different countries in the future (as one of the aims of
this competition). This selected model (with the parameters
described above) results in F1 scores of 51.0% and 51.4% for
the test] and fest2 sets of the challenge, respectively. The F1
scores on the test sets that are slightly lower than that on the
evaluation set (as shown in Table I) might indicate that the

5600

two test sets and the train set (thus, its split for the evaluation
set) may have different data distributions. As a matter of fact,
these differences in data distributions are also confirmed by
the organizer [37].

These scores ranked 11* among 12 shorted-list winners
(out of 121 participants). Interested readers can refer to
the summary of these winning approaches in this summary
paper [37] from the organizer. It is observable that these state-
of-the-art solutions, summarized in this paper, have base scores
similar to ours. However, the higher final scores of these higher
ranked solutions are mostly based on ensembles. For instance,
one solution trains 30 models with different hyper-parameters
and ensembles them to get the top results. As discussed, we
do not attempt ensemble direction since these are not practical
in the real world because they do not scale well.

All in all, the low F1 score is arguably acceptable due to
several practical constraints and the issues with the ground-
truth labels in the training sets, as detailed in the previous
sections. However, the selected approach still has the main
limitations as using Faster R-CNN with X101-FPN is slower
to train and has a longer prediction time than other model
types such as YOLO and SSD.

Furthermore, deep learning models are black-box in na-
ture [16]. Thus, in the future, we would also like to research
and explore the features extracted at the intermediate layers of
the learned models. Visualizations of these extracted features
help explain how and why this model performs on accurate
and wrong predictions to improve its performance [38].

VII. CONCLUSION

This work explores different state-of-the-art object detection
methods and their applicability for road damage detection
and classification tasks. Specifically, we experiment with De-
tectron2’s Faster R-CNN implementation with different base
models and configurations using the Global Road Damage
Detection Challenge 2020 dataset. We also examine other
state-of-the-art object detection methods and various tech-
niques like training time augmentations, testing time augmen-
tations, context information, and post-processing. However,
these methods are not suitable for the damaged road objects,
and their effects are not satisfactory. In other words, the results
indicate that Faster R-CNN with X101-FPN base model and
Detectron2’s default configurations produce good prediction
results for these tasks (F1 score of approximately 51.0% for
both test sets) and is also general enough to be used in different
countries. We also visualize and qualitatively evaluate the
existing labeling quality and suggest using the noisy student
approach to improve the road damage labeling process. In
the future, we suggest visualizing the intermediate features
extracted by this model. These visualizations will provide
insights bout how and why the model makes its predic-
tions—these profound understandings of how the model works
will enable modification of the model for better performance.

The source codes of the experiments are available
at the Github page of this project: https://github.com/
iDataVisualizationLab/roaddamagedetector.

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

V. Pham, N. V. Nguyen, and T. Dang, “Scagcnn: Estimating visual
characterizations of 2d scatterplots via convolution neural network,”
in Proceedings of the 11th International Conference on Advances
in Information Technology, ser. IAIT2020. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3406601.3406644

H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road
damage detection using deep neural networks with images captured
through a smartphone,” arXiv preprint arXiv:1801.09454, 2018.

D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, A. Mraz, T. Kashiyama,
and Y. Sekimoto, “Transfer learning-based road damage detection for
multiple countries,” 2020.

IEEE BigData 2020, “Global road damage detection challenge 2020,”
https://rdd2020.sekilab.global/, accessed: 2020-10-16.

K. Tong, Y. Wu, and F. Zhou, “Recent advances in small object detection
based on deep learning: A review,” Image and Vision Computing, p.
103910, 2020.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580-587.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91-99.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263-7271.
——, “Yolov3: An incremental
arXiv:1804.02767, 2018.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21-37.

D. D. Le, V. Pham, H. N. Nguyen, and T. Dang, “Visualization and
explainable machine learning for efficient manufacturing and system
operations,” 2019.

V. Pham, N. V. Nguyen, and T. Dang, “Scagcnn: Estimating visual
characterizations of 2d scatterplots via convolution neural network,”
in Proceedings of the 11th International Conference on Advances in
Information Technology, 2020, pp. 1-9.

Y. J. Wang, M. Ding, S. Kan, S. Zhang, and C. Lu, “Deep proposal
and detection networks for road damage detection and classification,” in
2018 IEEE International Conference on Big Data (Big Data). 1EEE,
2018, pp. 5224-5227.

W. Wang, B. Wu, S. Yang, and Z. Wang, “Road damage detection and
classification with faster r-cnn,” in 2018 IEEE International Conference
on Big Data (Big Data). 1EEE, 2018, pp. 5220-5223.

A. Alfarrarjeh, D. Trivedi, S. H. Kim, and C. Shahabi, “A deep learning
approach for road damage detection from smartphone images,” in 2018
IEEE International Conference on Big Data (Big Data). 1EEE, 2018,
pp. 5201-5204.

F. Kluger, C. Reinders, K. Raetz, P. Schelske, B. Wandt, H. Ackermann,
and B. Rosenhahn, “Region-based cycle-consistent data augmentation
for object detection,” in 2018 IEEE International Conference on Big
Data (Big Data). 1EEE, 2018, pp. 5205-5211.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980-2988.

improvement,” arXiv preprint

5601

(23]

[24]

(25]

[26]

[27]

[28]
[29]

(30]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

C. Reinders, H. Ackermann, M. Y. Yang, and B. Rosenhahn, “Object
recognition from very few training examples for enhancing bicycle
maps,” in 2018 IEEE Intelligent Vehicles Symposium (IV). 1EEE, 2018,
pp. 1-8.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223-2232.

H. Maeda, T. Kashiyama, Y. Sekimoto, T. Seto, and H. Omata, “Gener-
ative adversarial network for road damage detection,” Computer-Aided
Civil and Infrastructure Engineering, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672—
2680.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM
SIGGRAPH 2003 Papers, 2003, pp. 313-318.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.
Detectron2, “Detectron2 model 700,” https://github.com/
facebookresearch/detectron2/blob/master/MODEL_Z0OO.md, accessed:
2020-10-16.

Rosebrock, Adrian, “Super fast color transfer between images,” https://
www.pyimagesearch.com/2014/06/30/super-fast-color-transfer-images/,
accessed: 2020-10-16.

A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: Fast and flexible image
augmentations,” Information, vol. 11, no. 2, 2020. [Online]. Available:
https://www.mdpi.com/2078-2489/11/2/125

M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 10781-10790.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolladr, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740-755.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10687-10698.

D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata,
T. Kashiyama, and Y. Sekimoto, “Global road damage detection: State-
of-the-art solutions,” 2020.

T. Dang, H. Van, H. Nguyen, V. Pham, and R. Hewett, “Deepvix:
Explaining long short-term memory network with high dimensional time
series data,” in Proceedings of the 11th International Conference on
Advances in Information Technology, 2020, pp. 1-10.

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:43 UTC from IEEE Xplore. Restrictions apply.

