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Abstract—This paper details the methodologies and decisions
making processes used while developing the attacking and de-
fending models for the Graph Adversarial Attacks and Defense
applied to a large citation graph. To handle the large graphs, our
attack strategy is twofold: 1) randomly attack the structure first,
2) keep the structure unchanged, then continue the attack on the
features using the gradient-based method. On the other hand,
the defender is based on 1) filtering and normalizing the feature
data, 2) applying the Graph Convolutional Network model, and
3) selecting the models with the highest accuracy and robustness
based on our own attacking data. We applied these strategies
in KDD Cup 2020 on Graph Adversarial Attacks and Defense
dataset. The attacker can drop the accuracy of a surrogate 2-layer
Graph Convolutional Network model from 60% to 30% on the
test set. Our defending model has 68% accuracy on the validated
data and has 89% of the target labels remained the same while
adding fake nodes, generated by our attacking method, to the
graph.

Index Terms—graph neural network, graph convolutional
network, graph adversarial attacks, graph defense

I. INTRODUCTION

Graph representations are pervasive thanks to their expres-
sive power to support analyzing relationships among enti-
ties [1], [2], comparing larger graphs [3], [4], or enabling
subgraphs extractions [5] for knowledge discovery purposes.
Thus, ubiquitous domains use graph representations and re-
quire graph analysis, in which the citation graph [6] is a
typical example. Citation graph analysis is common because
its solutions can be extended to different application domains
such as white-collar crime [7], drug repurposing from literature
knowledge graph construction [8], and financial forecast-
ing [9], to name but a few.

Also, recent advancements in deep learning have given
rise to a large number of works in applying learned models
to solving tasks in different application areas [10] and have
exhibited remarkable success [11], [12]. Graph analysis is no
exception. Specifically, there is an enormous number of deep
learning works in recent years regarding graph encodings [13]
for different purposes, such as node classifications and link
predictions. Among these works, Graph Convolutional Net-
work (GCN) [14] gained initial success in the field and is the
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base for many other related techniques such as GraphSAGE
[15], FastGCN [16], Graph Attention Networks (GAT) [17],
Cluster-GCN [18], and Graph Isomorphism Network (GIN)
[19].

However, many of the current solutions are still vulnerable
to attacks if applied naively and or not analyzed thoroughly be-
fore deploying into the real-world. Specifically, there are works
in the literature suggesting that many current deep learning
models for graph analysis are vulnerable. For instance, Ziigner
et al. [20] show that a few, unnoticeable node feature and
graph structure perturbations can drop classification accuracy
significantly on node classification tasks for multiple datasets.

The adversarial attacks reduce the public trusts and hamper
the development of techniques using graph analysis in many
application domains. Therefore, this work investigates the
vulnerability of academic graphs and devises strategies to
defend them. Thus our contributions are:

« We devise strategies to attack the citation graphs with
heuristics to avoid real-world data constraints such as
large graph structure, discrete graph structure values, and
conservative/unnoticeable perturbations.

We also contrive and experiment techniques to build a
robust Graph Convolutional Network model leveraging
the knowledge gained through data exploration and char-
acteristics of the poisoned data generated by our attacking
strategies, with a prediction time constraint.

Finally, we apply these strategies to the KDD Cup 2020
on Graph Adversarial Attacks and Defense citation graph
dataset [21] to test and evaluate our attacking and defend-
ing approaches.

II. DATASETS AND ATTACKING/DEFENDING TASKS

This section defines our research problem and its require-
ments. Figure 1 summarizes the dataset and tasks for a typical
graph adversarial attack and defense case. The left panel
depicts the dataset with embedded features for the nodes
and the adjacency matrix for the edges. The right panel
explains the attacking and defending tasks competing over
the classification accuracy based on the provided data. First,
we need to devise strategies to attack the graph by adding
nodes and edges. On the other hand, we also strive to improve
methods to train models robust to the attacks. Specifically,
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this work uses the dataset provided by KDD Cup 2020 on
Graph Adversarial Attacks and Defense [21] as a case study.
This dataset contains 5,757,154 edges and 659,574 nodes.
These nodes are divided into 60,9574 nodes for training and
50,000 nodes for testing, respectively. Also, each node was
embedded by a 100-dimensional feature vector consisting of
float numbers between (—2,2), so the data was ready for
training and evaluating deep graph neural networks without
having to go through the initial graph embedding processes.
Embedded Citation Graph Dataset

Training/defending Attacking

feature representation || Competing over classification accuracy
— nodes

\ - — —

O g Fru— R Q/QO

) Node classifier _—
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Fig. 1. Overview of the dataset and tasks for graph adversarial attacks and
defense cases. The left panel depicts the given graph dataset with embedded
node features and adjacency matrix. The right panel shows the attacking task
by adding artificial nodes/edges (dashed, red circles/lines) and the defending
task by training robust models. These two tasks compete over the node
classification accuracy.

For the attacking task, attackers need to perturb the graph by
adding no more than 500 nodes and up to 100 edges per fake

. . , A BT
node. The adjacency matrix now becomes A’ = B C |
and the new feature matrix is X' = X , where A is

X fake

the original adjacency matrix, and X is the original feature
matrix. Figure 2 demonstrates more details on the data set
and the constraints of the attack. The artificial node and edge
limitations are to ensure that the attacks are conservative and
unnoticeable.

The attacking purpose is to reduce the node classification
accuracy for the testing nodes by the target models learned
from the training nodes. We do not know the target model, so
it is considered a black-box setting. Moreover, the defending
model learned from the training data must be robust and can
keep its accuracy on the testing data after being attacked by
the fake nodes and edges. Besides, there are also memory
and prediction time constraints. Specifically, the size of the
defending model should not exceed a maximum of 1GB. The
model should take less than 10 seconds on a K80 GPU and
60 GB memory server to perform node classification on the
whole graph.

We first test our own defending and attacking models against
each other. However, to be objective and accurately evaluate
our attacking and defending strategies, we also submit our
results to be assessed by the KDD Cup 2020 organizer. The
organizer uses the following formula to calculate the final
score of the attacker and defender of a team ¢ versus other
n competitors:

Do (L= fdjsai)) + 3202 s f(diyay)
2n

score; =
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where, f(d;,a;) means the accuracy of the defender d; on the
data attacked by attacker a;. In other words, the attacker’s
performance is measured by the average of how much it
can reduce the accuracy of the models developed by other
competitors. On the other hand, the defender’s performance is
measured by its average accuracy on graph data attacked by
other teams.

n= l659,574

100

Original Adjacency Matrix
A

n = 659,574 — X
Target
50,000 Matrix
k <500 B c Fake
L Y ) Submitted
Submitted Adjacency Matrix Feature Matrix
kx(n+ k) kx100

Fig. 2. A closer look at constraints of the attack. In this black-box scenario
(i.e., the target model is unknown), no modification on the original data is
allowed. We aim to attack 50,000 nodes in Target Matrix by adding no more
than 500 nodes, each can only have up to 100 edges (Matrix B & C). The
attack is carried out by appending an additional k X (k+n) adjacency matrix
to the original adjacency matrix A and also a feature matrix X g,k of the
fake nodes containing k vectors in R0 to the original feature matrix X.
Note that all the squared adjacency matrices are symmetric.

III. RELATED WORK
A. Graph Neural Networks

It is critical to understand how Graph Neural Networks
(GNNs) [22] work in graph adversarial attacks and defense
research. Specifically, Convolutional Graph Neural Network
(ConvGNN), first introduced in [23], is a type of GNNs
that can work directly on graphs and takes advantage of the
structural information. It can solve the problem of classifying
nodes in a graph, where labels are only available for a small
subset of nodes (semi-supervised learning). Figure 3 depicts
the typical architecture of a ConvGNN with multiple layers
for node classification, where Gconv denotes a convolutional
graph layer, X is the feature matrix of the graph. The node
representation is generated by aggregating its neighbors’ fea-
tures and the feature of itself. After that, these aggregates
go through a non-linear function, such as ReLU. By stacking
multiple graph convolutional layers, the message from a node
can be passed further in the network to extract high-level node
representations.

In [24], Wu and Zhang further categorize ConvGNNs
into two categories, namely Spectral-based and Spatial-based.
Spectral-based approaches define graph convolutions by intro-
ducing filters from the perspective of graph signal processing
and using the convolutional graph operation to remove noises
from graph signals. In contrast, Spatial-based approaches make
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Fig. 3. The general architecture of a ConvGNN with multiple graph convolutional layers for node classification, where X is the feature matrix of the input
graph and Gconv means a convolutional graph layer. The visualization is adapted from [24].

use of information propagation. Besides, as the name “Con-
volutional” suggests, the idea is to gather information from a
node’s neighborhood in graphs. This idea is generalized from
the computer vision field of research. However, while images
have a fixed structure, graphs are much more complicated.

Recently, Kipf and Welling introduced Graph Convolutional
Network (GCN) [14], the bridge that filled the gap between
spectral-based approaches and spatial-based approaches [24].
Since then, many new methods have been developed based on
spatial-based due to its attractive efficiency and generality. In
GCN, the information is aggregated by taking the weighted
average of all neighbors’ node features (including itself),
preferring lower-degree nodes (i.e., lower nodes get larger
weights). The resulting feature vectors are then fed into a fully
connected layer for training and then passed through a non-
linear function such as ReLU. Given a graph G = (A4, X),
whereas X is the feature matrix and A is the adjacency matrix,
the forward model then takes the simple form stated as the
following formula:

Z = f(X, A) = softmax (21 ReLU (AXW@) W<1>)

where, A = A + Iy is the adjacency matrix of the graph
G after adding self-loops via the identity matrix In. W is
the trainable weight matrix of layer [, Dii = > y /L-j, and
A=D"3AD"3.

For semi-supervised classification, cross-entropy error is
evaluated over all labeled examples:

F
L==Y Y YirlnZiy

keYy f=1

where, Y}, is the set of node indices that have labels, F' is the
dimension of feature maps in the output layer.

In practice, a deeper GNN can be generated by stacking
more layers on top of each other. The output of a layer is
the input for the next layer. In GNNs’ concept, the number
of layers is considered the maximum number of hops that
messages can pass through. So, depending on how far we
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think a node should get information from the networks, we
can configure a proper number of layers. In practice, we do
not want to go too far. Typically, with a few hops (e.g., 6 in the
case of social network [25]), we almost cover the entire graph
for real-world graphs, making the aggregation less meaningful.

GNNs may become inefficient to work with large graphs
that cannot fit into memory at once as the number of a node’s
neighbors can vary from a few to even thousands. To tackle
this issue, GraphSAGE [15] samples a fixed size of nodes
from each node’s neighbors to aggregate the information.
Furthermore, it also provides more sophisticated aggregators
such as LSTM cell and max-pooling rather than the weighted
average as in GCN.

Another popular ConvGNN model is Graph Attention Net-
work (GAT) [17], which is inspired by well-known Attention
mechanisms in Natural Language Processing tasks [26]. Atten-
tion mechanisms allow the machine learning model to focus
on the most relevant parts of the input which in turn boosts the
performance. More specifically, GAT uses an attention-based
architecture to perform node classification of graph-structured
data by assigning larger weights to the more “important”
nodes. These weights are learned with a neural network within
an end-to-end framework instead of using fixed weights as in
GCN. The attention mechanism shows some improvement in
performance over other GNNSs techniques such as GraphSAGE
on node classification tasks [24].

In [19], Xu et al. analyze the discriminative power of pop-
ular GNN variants, such as GCN [14] and GraphSAGE [15].
Their work shows that these GNNs are not able to distinguish
certain simple graph structures. The authors then introduce
Graph Isomorphism Network (GIN), a new technique that is
closely related to Weisfeiler-Lehman graph isomorphism test
(WL test) [27]. They state that the new techniques are as
powerful as the WL test in distinguishing graph structures and
achieves state-of-the-art performance on many graph classifi-
cation benchmarks.

Finally, GNNs often require the graph to be represented in
numeric forms (i.e., vectors for nodes and adjacency matrix
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for links), using graph embedding techniques. Regarding the
citation graph in which nodes represent research papers while
edges are the citations. In the first step, the papers are con-
verted into vectors using, e.g., Natural Language Processing
(NLP), embedding techniques such as Doc2Vec [28] and
Sentence-BERT [29]. One of the ConvGNN methods can then
be employed to solve specific tasks such as node classifications
or link predictions.

B. Adversarial Attacks and Defense on Graphs

Graph neural networks have been around recently and are
gaining traction. However, there are not many works on
adversarial attacks for graphs. Attacking on a graph G means
to perform small perturbations on it to make the classification
performance drop. Given G = (A, X), modifications of the
adjacency matrix, A, are called structure attacks, while changes
to nodes’ features, X, are called feature attacks. Figure 4
demonstrates some possible types of attack on a graph in
which target nodes are the nodes whose classification labels we
want to change, whereas attacker nodes are the nodes that the
attacker can modify [20]. Specifically, related nodes involve
attacker nodes and target ones. Also, there are direct and
indirect attacks depending on which nodes/links the attackers
are altering.

Indirect attack (t & S)
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Fig. 4. Two types of attacks on graphs (adapted from [30]). The indirect
attack may modify the attackers’ features, add connections to the attackers,
or remove connections from the attackers. On the other hand, direct attacks
may modify the targets’ features, add connections to the targets, or remove
connections from the targets.

One common method is to adopt adversarial attack tech-
niques in Deep Neural Networks to the GNNs, such as
gradient-based techniques. Using these techniques on graphs
is not a trivial task since the adjacency matrix contains discrete
values causing inaccurate gradient update. Consequently, the
gradient-based approaches may achieve sub-optimal attack
performance due to the inaccurate gradients on discrete data.
In recent work, Ziigner et al. [20] propose an efficient algo-
rithm named Nettack for performing transferable attacks. First,
the authors generate a linear surrogate model by replacing
the non-linear function (e.g., ReLU) with a simple linear
activation function and then performing both feature and
structure attacks. There are also constraints on the changes to
assure that the attack is unnoticeable. After that, they exploit
the adversarial attacks’ transferability to attack other models
with similar architecture and are trained on the same dataset.
The strategy can attack the node classification problem without
knowledge about the graph.
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In another work, Wu et al. [31] introduce a technique
employing integrated gradients to determine the effect of
changing selected features or edges. Specifically, attackers use
integrated gradients for all nodes and edges in a target’s neigh-
borhood to attack it. These values are sorted and considered as
“importance scores” for the corresponding nodes and edges.
Then, the feature in the node or link with the highest score
will get flipped first (i.e., 0 to 1, or 1 to 0), and the process
keeps repeating for the rest of the nodes and edges. The
authors also propose a defense technique. They observe that
adding edges tends to have more effect than removing edges,
and perturbing edges provides a better attack than modifying
features. Moreover, high-degree nodes are more difficult to
attack than low-degree nodes. Thus, in their defense method
called GNN-Jaccard, they suggest removing edges that connect
very dissimilar nodes and then train the model on the modified
data to make the model more robust.

Wang et. al [32] employ a new attack strategy in a quite
similar setup to ours. In their setting, the attacker can only add
malicious fake nodes to the original graph without changing
any existing edge or feature. Moreover, the proposed algorithm
can also find a small perturbation to attack a group of nodes
at the same time. It adopts a greedy approach starting all O
in the additional adjacency and the feature matrices, then one
feature or one edge is added at each step by changing its value
to 1. Moreover, the authors propose a new technique named
greedy-GAN to generate fake nodes with features similar to
the real ones. They use a loss function to measure the trade-off
between attacking power and the realness of the fake nodes.
That being said, they make some assumptions in terms of
models and data set, such as the target model is GCN [14],
and both the additional feature matrix and adjacency matrix
are discrete (i.e., 0/1 matrices).

There are some other works focusing more on the defense
perspective. Entezari et al. [33] employ Low-Rank Solutions
to resist attacks from Nettack introduced by Ziigner et al.
[20]. More specifically, they propose a technique computing
the low-rank approximation of the adjacency and feature
matrices through an SVD decomposition. The method acts
as a noise filter and helps to retain only useful information
of the graph. The authors claim that their defense strategy
can achieve a performance close to the performance on the
original graph. In another work, Wang et al. [34] introduce an
adversarial training method called GraphDefense to improve
the robustness of GCNs. The authors do not constrain the
adjacency matrix element to be discrete during the training
process allowing them to use gradient descent on the adjacency
matrix effectively.

All in all, these above-mentioned attacking strategies have
several assumptions regarding available information concern-
ing the graphs, discrete in feature matrix, memory, and com-
putation time that cannot be satisfied in this specific case.
Therefore, in the next sections, we detail these constraints and
our strategies to tackle the attacking and defending tasks.
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TABLE I
SUMMARY OF COMMON CITATION NETWORKS [35] AND THE KDD Cup
2020 DATA SET.

Dataset #Nodes #Edges  #Features  #Classes
Citeseer 3,327 4,732 3,703 6
Cora 2,708 5,429 1,433 7
Pubmed 19,717 44,338 500 3
Cora-ML 2,995 8,416 2,879 7
KDD2020 659,574 5,757,154 100 18

IV. ATTACKER

There are some strategies to attack graphs, as mentioned in
the previous session. However, these methods require a lot of
memory to keep track of the attacking information related to
the adjacency matrix (e.g., 5, 757,154 x 5,757, 154 matrix for
the gradients when using gradient-based approaches, in this
case). Besides, it is obvious that the KDD Cup 2020 data set
is much bigger and has more classes than some well-used
citation network data sets, as shown in Table I. Thus, the
above-mentioned strategies are impractical and inapplicable
in this situation from a memory perspective. On the other
hand, we have many target nodes (50,000) to attack rather
than focusing on only one target. Furthermore, there are more
strict constraints upon attack strategies that can apply to the
graph in this specific case. For instance, we cannot remove
any edges from the input graph. Regarding adding new edges,
the fake edges can only initiate from the artificial nodes, and
not to mention that the labels of target nodes are unknown.
Consequently, we can not apply the high complexity methods
mentioned in the previous works directly to the challenge. The
tight constraints make it difficult to influence target nodes. As
a result, it is extremely challenging to launch a severe attack
on the input graph. Therefore, it is necessary to develop a new
strategy that can work well on large-scale graphs under strict
conditions.

Our method is to choose a good graph structure attack first,
instead of striking on both the structure and feature at once. By
dealing with one type of attack at a time, it is easier to carry
out the attack. After finding an effective attack strategy on the
graph’s structure, we keep it unchanged and adopt gradient-
based techniques for feature attacks. By doing this, we do not
have to keep track of the gradients of the adjacency matrix,
and we can attack many target nodes at once.

Several heuristics were explored for the structure attacks.
The following sections list out our main ideas (Figure 5):

Structure attack on all (50,000) target nodes: The most
straightforward way for a structure attack is to randomly
choose 100 target nodes for each fake node. The more ad-
vanced one would be clustering the 50,000 target nodes (e.g.,
K-means on feature vectors and/or labels to cluster the target
nodes) so that each fake node will connect to 100 similar target
nodes. The aims of doing these are that the attack can be more
efficient since clustered nodes are similar and can be attacked
in batch.

Structure attack on a part of target nodes: With this
approach, we aim to concentrate on some promising target
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nodes rather than scatter attack power on the whole set of
target nodes. After filtering some target nodes to attack, we
can further cluster them to connect similar target nodes to the
same fake node. The strategies to isolate nodes with higher
priority to attack are:

« Attack on low degree nodes first. It’s more challenging to
attack higher degree nodes (though more attractive) because
more neighbors connect to these nodes. Ziigner et al. [20]
stated the same in their work.

o If we know some nodes that the model predicts incorrectly,
we do not need to attack them. Thus, we can focus on
“promising” nodes that we think the model can predict
correctly. To get a list of promising target nodes, we build an
extra model to learn which nodes the model can predict. We
use a gradient boosting algorithm, LightGBM [36], to get
highly confident nodes that the model can predict and attack
on these nodes only. The task is a binary classification, in
which class 1 indicates a node that our GCN model can
predict, whereas class 0 represents a node that cannot be
predicted. When we get half of the target nodes to attack,
83% of these nodes can be predicted by the GCN model.

. Train node
. Target node

. Fake node

Fig. 5. Structure attack strategies: (a) All target nodes have at least an edge
to the fake nodes; (b) Only some target nodes have edges to the fake nodes

As stated, due to the graph size, discrete optimization
complexity, time, and memory constraints, we cannot perform
both structure and feature attacks simultaneously. Therefore,
after finishing the structure attack, we keep the structure
unchanged and attack the features. To attack the target nodes,
we need the labels of these nodes. However, these labels
are missing from the input. Thus, we devise a strategy to
obtain this by training a surrogate 2-layer GCN model on
the data and then use the learned model to predict the target
nodes’ labels. In this specific case, to keep the feature attack
unnoticeable, it is required to keep feature values in a range
of [-2, 2]. However, we further constrain the value range to [-
1.73, 1.62] after exploring this specific graph citation dataset’s
value range.

For each batch, the loss function is cross-entropy calculated
on target nodes only. Besides this, we also have an alternative
for the loss function called “targeted attack” loss. The only
difference between these two functions is that instead of just
maximizing the loss of the correct class, the latter maximizes
the correct class’s loss while also minimizing the loss of the
target class. From the distribution of labels (Figure 8), it is
obvious that some classes such as 12 and 14 have just a few
observations. We assume the distribution is similar in the test

Authorized licensed use limited to: Texas Tech University. Downloaded on March 21,2021 at 01:22:57 UTC from IEEE Xplore. Restrictions apply.



set. In other words, it is also true that nodes that belong to these
classes in the 50,000 target nodes are rare. Thus, in “targeted
attack” loss, these minor classes are chosen as the targets. We
expect to see an increase in the predictions of minor labels,
and that it can help to reduce the performance of the model
further. It’s worth noting that these labels’ actual meanings are
unknown to the analysts in this case.

The features of fake nodes are updated on their correspond-
ing gradients. In updating the features of fake nodes, there are
some strategies in this step as follows:

« Using Fast gradient sign method (FGSM) [37]

o Gradient attack [38]: instead of a fixed, large updates
as in FGSM, in this method, we update the gradient by
adding the product of its gradient and learning rate to the
features. It’s similar to normal gradient descent, except
we go with the direction of the gradient (not against it).
Moreover, in this case, we need a large learning rate
because we observed that the gradients are extremely
small.

o Normalized Gradient attack [38]: Similar to the gradient
attack mentioned above, but we normalize the gradient
by its L2 norm vector.

For each structure attack, we apply a feature attack with a
loss function to measure the result. To calculate the accuracy
drop from the data provided, we create a test set in which
the ground-truth can be accessed. It is worth noting that the
attack will perform on robust defenders, which already have
defense mechanisms. With that in mind, the choice of final
attack strategy is not only based on the performance on the
test set but also consider how likely the defender will detect
it (i.e., using conservative attack strategies for unnoticeable
perturbations).

Via experiments, we notice that other sophisticated structure
attack approaches are not any better than the random method.
Regarding the loss function, the predictions’ distribution fluc-
tuated when using “targeted attack” loss. Furthermore, this
loss function could not reduce the model’s performance much
compared to the simple cross-entropy loss used in the final
attack strategy. Thus, we first fix the structure attack by only
getting 100 target nodes for each fake node.

Regarding feature attack, FGSM is likely to be detected by
defenders because the features tend to lie at the extreme values
(i.e., -1.73 or 1.62) as these seem to have higher attacking
impacts. The defenders can easily ignore fake features by
looking at the distribution and reshape these values (or using
any other techniques to deal with outlying kind of values).
We ended up using a Gradient attack, with a learning decay
of 0.95, and a learning rate of 100,000. The fake nodes’
features are first initialized randomly by uniform distribution
in the range of [-0.1, 0.1]. After 30 epochs, we got a good
result, which can reduce the accuracy from 60% to 30% on
the surrogate 2-layer GCN model generated for our attack
strategies’ testing purposes. More importantly, the generated
features also have a more similar distribution to the origin
data.
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V. DEFENDER

A. Data exploration

40000 A

30000

20000 A

feature value counts

10000 A

-1.0 0.0

feature values

0.5 1.0

Fig. 6. Feature distribution of a sample feature (the first one of 100 features)
from all the nodes. It’s observable that the feature values for the nodes are
normalized to a standard normal distribution.

We first explored the data (graph node degrees, features, and
class labels) before building prediction models and devising
defending strategies. After exploring the features, it is observ-
able that they are normalized using standard normalization
(z-score normalization). For instance, Figure 6 shows the
histogram describing the distributions of value counts over 100
bins for a sample feature (the first one of the 100 features). We
further investigated the statistical descriptions of the values in
all the features and found that they have min, max, mean values
as approximately -1.735, 1.622, and -0.013, respectively. These
feature descriptions help devise a strategy to increase model
robustness by giving a constraint to the feature data as roughly
in the range of -1.8 to 1.8. A conservative attacker should
not have node feature values that exceed these boundaries.
Therefore, we applied the following formulas to every input
feature value (x):

x=ReLU(z+1.8)—1.8
x=18— ReLU(1.8 — z)

Furthermore, we also explored the characteristics of the
features generated by our attack strategy, as described in Sec-
tion IV. Even with the feature constraint in the specified range,
it is likely that the attacking nodes have more values at the
extreme borders (around -1.8 and 1.8), as shown in Figure 7.
This skewed distribution might be explained by the fact that
extreme values have higher attacking impacts. It’s worth noting
from this figure that we know most of the attacking features
are at the extremes because we know what our attacking nodes
are. However, in the case of the data attacked by others, these
nodes are unknown and are blended with the ground-truth
values as long as they are in the boundary range (i.e., [-1.735,
1.622]). In other words, we cannot use the fact that most of
the attacking nodes have values at the extreme and remove
all the nodes with extreme values. Doing this also removes a
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Fig. 7. Feature distribution of a sample feature (first feature, out of 100
embedded node features) from 500 attacking nodes. Most of the feature values
are located at the two extremes (around -1.8 and +1.8).

large number of real nodes. Also, looking at these attacking
data, one may devise strategies to detect these fake nodes as
outliers. However, these strategies exceed the time constraint
or only fit this specific attacking data (do not generalize well).
Therefore, we decided to apply a normalization layer to the
filtered data. This normalization layer helps to improve the
robustness of the system, as explained in the later sections.
Moreover, it helps the model to converge faster and achieve
better learning time.

Regarding class labels, as shown in Figure 8, there are 19
labels in the dataset. It is observable that label 2 is missing,
and there is an imbalance in the label counts. Heuristically, the
more classes in the dataset, the more difficult the classification
problem would be. Therefore, we decided to work with 18
available labels using their indexes (0 to 17).

80000 -

60000 -

40000 -

class counts

20000 A

1 345 6 7 8 91011121314 151617 1819
node classes

Fig. 8. Labels of the nodes in the dataset with 19 labels, imbalanced label
counts, and label 2 is missing. It’s worth noting that these labels’ actual
meanings are unknown to the analysts in this case.

Finally, we also explored the node degrees from the given
adjacency matrix. Figure 9 (A) depicts the node degree counts
in the log scale with a long tail. Specifically, many nodes
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have zero or few degrees while a few have very high degrees
(the min, max, and average node degrees are 0, 4,517, and 8,
correspondingly). Furthermore, the log-log scale of the node
degrees and node degree probabilities, as shown in Figure 9
(B), indicates that this graph follows the power-law, which
could be exploited to increase the robustness of the prediction
model. However, we keep this direction as a future work due
to time limitations.
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Fig. 9. Node degree distributions: Panel (A) shows the distributions of node
degrees with a long tail; Panel (B), the log-log scale indicates that the graph
follows the power-law.

B. Model selection

Methodologies: The main ideas for model selection are that
we explore several standard model types for Graph Neural
Networks using the given dataset. The data is split into 50%
for training and another 50% for validation. In other words,
we select the model that performs the best on the validation
set with early stopping. Also, we utilize our attacking data
generated as described in Section IV to check how vulnerable
our models are to attacks. Since we do not have labels for
the target nodes of the attacks (assumed to be the last 50,000
nodes in the given dataset), we measure the vulnerability by
the percentage of nodes predicted differently with and without
having the attacking nodes in the graph.
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Model types: The simplest approach to this problem is
training Multilayer Perceptrons (MLP), Random Forest, or
more advanced models to make predictions. This approach
has the advantage of being robust to structure attacks since it
does not take the graph structure into account while predict-
ing. However, the accuracy of this approach is low. Recent
advancements in graph analysis offer more methods with
higher accuracy for this task. Specifically, GCN [14] and
GraphSAGE [15] are two popular methods in Graph Neural
Networks [24]. GCN is a fast and efficient approach to learn
and encode graphs into embeddings automatically. However,
this approach is vulnerable to attacks if the data is not pre-
processed carefully [20], [39]. On the other hand, GraphSAGE
uses the sampling approach to saves memory and increases
the robustness of the prediction models [32]. There are also
many other different approaches surveyed in this work [24].
However, due to time limitations, we decided to explore GCN
and GraphSAGE in this project.

Besides having high accuracy, another the primary purpose
of the defending model is to be robust. Therefore, we started
the model selection process with GraphSAGE models. After
several experiments, we selected the architecture with the
number of samples as 10, 5, and 3, for the first, second, and
third levels of neighbors correspondingly. This GraphSAGE
architecture archives an accuracy of approximately 64% on
the validation set.

The advantages of GraphSAGE gained at the cost of sacri-
ficing time efficiency and a fraction of the accuracy. Regarding
accuracy, it has a slightly lower accuracy compared to the
GCN model (discussed later in this section). Concerning the
prediction time, it takes a long time (in terms of hours) to
complete the sampling, calculating embeddings, and finally
giving predictions for this reasonably large dataset. Therefore,
though the robustness of the model is tempting, the time
constraint (as 10s limitation for the prediction specified in
this specific case) stopped us from further exploring the
GraphSAGE approach.

This dataset’s graph size (as opposed to the gradients of
the adjacency matrix as in the attacking case) is suitable
to fit in the memory (thanks to the sparse matrix format).
Therefore, GCN is fast and efficient in this case. Figure 10
summaries the selected architecture after our experiments. It
consists of a filter and a normalization layer. These two layers
help improve the system’s robustness by removing the impacts
of the attacking features, which are too different from the
original feature values. Three GCN layers follow these layers
with 256, 128, and 64 hidden nodes correspondingly. Finally,
the last GCN layer contains 18 hidden units corresponding to
18 labels of the nodes.

This selected GCN architecture has an accuracy of approx-
imately 68% on the validation set (slightly higher than the
GraphSAGE approach). More importantly, it takes a much
shorter time (in terms of a few seconds) to complete the class
predictions for all the nodes in the given dataset, making it
suitable regarding prediction time constraints. Furthermore, as
discussed earlier, to evaluate the vulnerability, we used our
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Fig. 10. Summaries of the selected GCN architecture with layer types and
corresponding hidden nodes. It’s worth noting that the filter layer is to reshape
the input values into the range [-1.8, 1.8], and the normalization layer helps
to stabilize the learning and increase the robustness of the model.

output
(18)

= |

generated model to predict the labels for the target nodes (the
last 50,000) with and without having the fake nodes in the
graph. The resulted difference is 89%, which means that the
attacking data could change 11% of our accuracy. Also, it’s
worth noting that without the normalization layer (as discussed
earlier), the difference is 58%. This difference means the
attacking data could reduce about half of our accuracy for
the targeting nodes if we do not use the normalization layer.
As discussed earlier, the MLP model with predictions based
on the original node features without taking the graph structure
into account is robust to attacks. Therefore, we decided to
explore the combination of MLP and GCN with the hope that
the resulted model can make the predictions from the feature
data to increase the robustness (via the MLP layers) and can
still keep the accuracy whenever possible (via the GCN layers).
As shown in Figure 11, after filtering and normalizing, the data
is branched to two more MPL layers (with 128 and 64 hidden
nodes, respectively). The output from GCN and MLP layers
are then combined (at the orange arrow) and fed into another
linear layer (with 64 hidden nodes) before the final output
layer. The accuracy of this approach is 67% (slightly lower
than the GCN only approach). Regarding vulnerability based
on our attacking data, the prediction results between having
and not having the fake nodes in the graph are 27% the same
(for the 50,000 targeting nodes), which means that the attack
could alter 73% of the targeting labels. Therefore, this GCN
and MLP combination approach does not work in this case.
Finally, a recent work [17] assumes that contributions of
neighboring nodes to the central node are neither identical
(like GraphSAGE) nor predetermined (like GCN). Thus, they
proposed a GAT (Graph Attention Network) method that
adopts attention mechanisms to learn the relative weights
between two connected nodes. Besides, more powerful GNNs
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Fig. 11. The explored model with the combination of MLP and GCN. After
filtering and normalizing, the input data branch out (to MLP and GCN stack
of layers), then the outputs of these stacks are merged again (at the orange
arrows) before the last two fully connected layers.

such as GIN [19] would be an auspicious candidate. These
methods are promising and can be used in the defense model.
However, they also take time to perform the classification
on the whole large-scale graph. Thus, it does not satisfy the
specified time constraint. Therefore, the final selected model
for this specific case is the GCN approach, as described in
Figure 10.

VI. IMPLEMENTATION AND RESULTS

The source code for our attacking and defending models are
available at the Github page of the project at https://github.
com/iDataVisualizationLab/GAAD. Also, our models achieve
a score of 0.635 as calculated by (II) and ranked at the 7th
place out of 16 winners list (among 411 single-player and 42
multi-player teams respectively) [21].

VII. CONCLUSION AND FUTURE WORK

This work proposes strategies to attack and defend a large
citation graph with memory and time constraints under a
black-box scenario. Specifically, for attacking, we first build
a surrogate GCN model, then try to attack the graph structure
first by assigning each 100 target nodes to a fake node
randomly. Then, with the structure fixed, we attack the node
features by using the gradient-based method. We aim to reduce
the model prediction performance significantly and constraint
the fake features to have a similar node value distribution to the
origin data. On the other hand, our defending model is based
on GCN due to its high accuracy and fast prediction. To avoid
vulnerability, we carefully pre-process the input data using a
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value filter and a normalization layer. Also, we validated the
selected model based on our own attack strategies.

In future work, we aim to explore different strategies on
structure attack, such as using multi-level fake nodes in which
some “root” fake nodes connect indirectly to the target nodes
through other fake nodes. In addition, it is worth to conduct
experiments on combining some different loss functions in
feature attack. For defense, GAT and GIN model types with
a strategy of adversarial training and power-law of the node
degrees should be the next directions for devising a more
robust model. Besides, we would like to delve deeper into
normalization techniques and their defense abilities to further
improve the robustness of GNNGs.
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