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ABSTRACT 
In this paper, we propose an improved variant of HOT SAX 
algorithm, called HS-Squeezer, for efficient discord detection in 
static time series. HS-Squeezer employs clustering rather than 
augmented trie to arrange two ordering heuristics in HOT SAX. 
Furthermore, we introduce HS-Squeezer-Stream, the application 
of HS-Squeezer in the framework for detecting local discords in 
streaming time series. The experimental results reveal that HS-
Squeezer can detect the same quality discords as those detected 
by HOT SAX but with much shorter run time. Furthermore, HS-
Squeezer-Stream demonstrates a fast response in handling time 
series streams with quality local discords detected. 
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1 INTRODUCTION1 
The problem of detecting unusual (abnormal, novel, deviant, 
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anomalous, discord) subsequences in a time series has recently 
attracted much attention. Time series anomaly detection brings 
out the abnormal patterns present in a time series. Application 
areas that explore such time series anomalies are, for example, 
fault diagnosis, intrusion detection, fraud detection, financial 
auditing and data cleansing.  
There has been an extensive study on time series anomaly 
detection in the literature. Various algorithms for time series 
discord discovery have been proposed, such as brute-force and 
HOT SAX by Keogh et al.  (2005) [7]; WAT by Bu et al. (2007) 
[1]; a method based on Piecewise Aggregate Approximation 
(PAA) bit representation and clustering by Li et al. (2013) [11]; a 
method based on segmentation and cluster-based outlier 
detection by Kha and Anh (2015) [10]; and a method based on 
time series segmentation and anomaly scores by Vy and Anh 
(2016) [16].  Among these above-mentioned algorithms for 
discord discovery in time series, HOT SAX has been considered 
as the most popular algorithm. HOT SAX is an unsupervised 
method of anomaly detection and has been applied in several 
real applications. However, this algorithm still has one 
weakness: HOT SAX still suffers from a high computational cost. 
Discord detection in streaming time series has emerged as an 
attractive problem recently. The task of finding the most 
important discord in streaming time series arises in diverse 
applications. For example, electrocardiogram time series of a 
given patient often continuously arrives during his/her 
treatment. However, discord detection in streaming time series is 
a non-trivial task. It is challenging to adapt a discord detection 
algorithm in static time series to a discord detection algorithm 
for streaming time series. 
As for streaming time series, there have been a few researches 
works of anomaly detection that will be listed as follows. Liu et 
al. in 2009 proposed a framework for discord detection in 
streaming time series, called Detection of Continuous Discords 
(DCD) [13]. DCD can find continuous discord from local 
segments of a time series stream. One important technique in 
DCD is that it limits the search space to further enhance the 
discord detection efficiency. Toshniwal and Yadas (2011) [15] 
introduced an extension of HOT SAX to find outliers in local 
segments of a streaming time series. In this work, the criterion to 
determine time series outliers is the type of deviation from 
normal behavior, i.e. above or below normal. When there is a 
newly incoming subsequence, the data distribution of these 
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distances is reevaluated. Due to this reason, the algorithm incurs 
high computational complexity. Yeh et al. in 2016 [17] proposed 
a unifying framework that can discover motifs, discords and 
shapeless from time series. This framework is based on the basic 
task: finding all pair similarity joins in two time series. The basic 
algorithm for the basic task, called STAMP, is based on the 
calculation of sliding dot products between a query 
(subsequence) and a time series which exploits Fast Fourier 
Transform (FFT).  Based on STAMP, the authors proposed one 
algorithm for discord discovery in static time series and one 
algorithm for discord discovery in streaming time series. 
However, due to FFT, the complexity of STAMP is rather high, 
O(n2logn). Therefore, all the time series data mining tasks such 
as discord discovery, which is based on STAMP, still incur high 
complexity.  
Motivated by the framework given by Liu et al., in this work we 
aim to develop an efficient method for discord detection in 
streaming time series. This work makes two contributions. First, 
we propose an improved variant of HOT SAX, called HS-
Squeezer, for efficient discord discovery in static time series. In 
this algorithm, we use a clustering method instead of an 
augmented trie to support the discord discovery process.  
Second, we introduce HS-Squeezer-Stream, the application of 
HS-Squeezer in the framework given by Liu et al. for detecting 
local discords in streaming time series. The experimental results 
reveal that HS-Squeezer can detect the same quality discords as 
those detected by HOT SAX but with much shorter run time. 
Furthermore, HS-Squeezer-Stream demonstrates a fast response 
in handling time series streams with quality local discords 
detected. 
The rest of our paper is organized as follows. Some background 
and related works are provided in Section 2. In Section 3, we 
introduce the HS-Squeezer algorithm. In Section 4, we introduce 
our algorithm for discord detection in streaming time series. The 
extensive experiments of our two proposed algorithms are 
reported in Section 5. Finally, Section 6 presents some 
conclusions and remarks for future works. 

2 BACKGROUND AND RELATED WORKS 

2.1 Definitions 
A time series discord is a subsequence that is very different from 
its closest matching subsequence. However, in general, the best 
matches of a given subsequence (apart from itself) tend to be 
very close to the subsequence under consideration. For example, 
given a certain subsequence at position p, its closest match will 
be the subsequence at the position q where q is far from p just a 
few points. Such matches are called trivial matches and are not 
interesting. When finding discords, we should exclude trivial 
matches and keep only non-self matches defined as follows. 
Definition 1. (Non-self match): Given a time series T containing 
a subsequence C of length n beginning at position p and a 
matching subsequence M beginning at position q, we say that M 
is a non-self match to C if |p – q| ³ n, i.e. C does not overlap M.  
Definition 2. (Time series discord): Given a time series T, the 

subsequence D in T is called the most significant discord in T if 
the distance to its nearest non-self match is largest. 
A streaming time series T is a semi-infinite time series sequence 
of real number t1, t2, …, tn, … where tn is the most recent data 
point. Given a streaming time series T, the problem is finding the 
most significant discord of length l as soon as a newly incoming 
subsequence C of length l exists. This implies that the discord 
detection might be repeatedly executed once for every newly 
incoming data point of T. In storing a streaming time series, to 
avoid memory overflow, we use larger-size buffer B to contain 
the local segment of the streaming time series under 
consideration. In general, at time point t, suppose B contains a 
time series of length n, B = t1, t2, …, tn and tnew is the newly 
incoming data point. At time point t + 1, the time series in the 
buffer becomes B = t2, …, tn, tnew. That is the data point t1 is 
removed out of the buffer at time point t +1 and it is called the 
obsolete data point. Notice that the length of the buffer is 
specified in advance. 

2.2 HOT SAX Algorithm 
The HOT SAX algorithm was proposed by Keogh et al. in 2005 
[7]. To find discord of length n in a time series T, HOT SAX 
extracts subsequences of length n by shifting a sliding window of 
length n across the time series T. Next, these subsequences are 
converted into PAA representation [12] and then to SAX 
representation [12] that has the SAX word length w. HOT SAX 
puts these SAX words in an array where the index refers back to 
the original subsequence. Once HOT SAX has this ordered list of 
SAX words, the algorithm can place them in a tree structure 
(called augmented trie) where the leaf nodes contain a linked list 
index of all word occurrences that map there. The parameters we 
have to supply to HOT SAX are the length of discord n, the SAX 
alphabet size a, and the SAX word length w. To realize an early 
exit of the for loops, HOT SAX applies the two following order 
heuristics: (a) Outer loop heuristic: It first visits subsequences 
corresponding to the SAX words that have the smallest word 
count, and then it visits the rest of the subsequences in random 
order; (b) Inner loop heuristic: for each candidate in outer loop, it 
first searches its nearest non-self match in the leaf node of the 
tree that has the same SAX word, and then it visits the rest of the 
subsequences in random order. 

2.3 Squeezer Algorithm for Clustering 
Categorical Data 

Squeezer [5] is a modified version of the incremental clustering 
method Leader [4] for clustering categorical data. The main ideas 
of Squeezer will be explained as follows. 
Let A1, …, Am be a set of categorical attributes with domains D1, 
…, Dm. respectively. Let the dataset D be the set of patterns 
where each pattern t: t  Î D1 ´…´  Dm. Let TID be the set of 
unique identifiers of every pattern. For each tid ÎTID, the 
attribute value for Ai of corresponding pattern is represented as 
tid.Ai. 
Definition 3: (Cluster) Cluster  Í TID is a subset of TID. 
Definition 4: Given a cluster C, the set of different attribute 
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values on Ai with respect to C is defined as: VALi(C) = {tid Ai | tid  
Î C} where 1 £  i £ m. 
Definition 5: Given a cluster C, let ai Î Di, the support of ai in C 
with respect to Ai is defined as: Sup(ai) = |{tid | tid.Ai = ai, tid 
ÎC}|. 
Definition 6: (Similarity) Given a cluster C and a pattern t with 
tid  Î TID, the similarity between C and tid is defined as:  

 𝑆𝑖𝑚(𝐶, 𝑡𝑖𝑑) = 	∑ -./(01)
∑ -./(02)32∈5671(8)

9
:;<       (1) 

             

 
where ai = tid. Ai 

The Squeezer algorithm has n patterns as input, similarity 
threshold s as a parameter supplied by user and produces clusters 
as final results. Initially, the first pattern in the database is read 
in and the first cluster is constructed to contain the first pattern, 
i.e. C = {1}. Then, the consequent patterns are read iteratively. 
For each pattern, by the similarity function, its similarities with 
all existing clusters are computed. The largest value of similarity 
is chosen. If it is larger than the given threshold, s, the pattern 
will be assigned to the cluster that has the largest value of 
similarity. If the above condition does not hold, a new cluster 
must be created with this pattern. The algorithm continues until 
it has scanned all the patterns in the dataset. 
The outline of the Squeezer algorithm is described as Figure 1. 
Algorithm Squeezer (D, s) 
   while (D has unread pattern) 
   begin while 
       pattern = getCurrentPattern(D); 
       if (pattern.tid = 1) 
           then addNewCluster(pattern.tid) 
       else { 
           for each existed cluster C do  
                 simComputation(C, pattern); 
           get the max value of similarity: sim_max; 
           get the corresponding Cluster Index: index; 
           if sim_max ≥ s then   
                 addPatternToCluster (pattern, index) 
           else  
                 addNewCluster(pattern.tid) } 
   end while 
   outputClusteringResult (); 
Figure 1: The Squeezer algorithm. 
 
The line simComputation(C, pattern) is computed by Eq. 1. 

2.3 A Framework for Discord Detection in 
Time Series Stream 

Liu et al. in 2009 proposed a framework, called DCD (Detection 
of Continuous Discords), for discord detection in streaming time 
series [13]. One important technique in DCD is that it limits the 
search space to further enhance the detection efficiency. The 
pseudo-code of the framework DCD is described as in Figure 2. 
In the framework DCD, we use two data structures: the buffer B 
and array V. In explaining the use of array V, we need the 
definition of nearest non-self neighbor distance of a subsequence 
as follows. 
Procedure DCD 

Input: A given time series stream and the discord length of n 
Output: The local discords (discord in the buffer) 

1. Initialize (); 
2. Read the time series data points into B // B is the buffer 

3.    [prev_loc, dist]=FindDiscord(B, n); 
4.    Output the local discord LD = [prev_loc, t]; //t is the current 
time 
5.    Add dist into array V; 
6.    while (the time series stream is not stopped) do 
7.        Read the next data point into B; 
8.        [loc, dist] = FindDiscord(B, n); 
9.        if loc ≠ prev_loc - 1 &&	valid(dist, V) then 
10.      Output the local discord LD = [loc, t]; //t is the current 
time 
11.      end if 
12.      prev_loc = loc; 
13.     Add dist into array V; 
14.    endwhile 
Figure 2: The Framework DCD for discord detection in 
streaming time series. 
Definition 7: (Nearest non-self neighbor distance): Given a time 
series T, for any subsequence P, Q is the nearest non-self match 
of P, the distance from P to Q is the nearest non-self neighbor 
distance of P.  
The new incoming data points will arrive to the buffer 
continuously. With the assumption that we start to find the 
discord when the buffer is full. At that moment, the FindDiscord 
procedure is invoked to detect the discord in the time series 
segment in the buffer B. The nearest non-self neighbor distance 
of the current discord is stored in the array 𝑉. Next, we read the 
new incoming data point from the stream, we put it in the right 
end of the buffer B and remove the left most data point in the 
buffer out of the buffer. At this moment, we invoke again the 
FindDiscord procedure to find the new discord. Whenever the 
discord is found, we output the discord if its location is different 
from that of the previous discord. The loop continues until the 
stream terminates.  
To find the interesting discords from the given time series 
stream, we need to use the valid function which is defined as 
follows. 

valid(dist, V)  is true if dist > mean(V)*threshold 

where mean(V) is the mean value of all elements in the array V, 
threshold and the size of the array V are specified in advance by 
user. 
A simple solution for FindDiscord procedure is to use the existing 
window-based algorithm such as HOT SAX to find the discord 
from the current buffer. In that case, we called the online discord 
detection algorithm as Brute-force HOT SAX (BFHS) algorithm. 
BFHS is not efficient since it has to search the whole buffer in 
each time of discord detection. 
Liu et al. proposed a new FindDiscord procedure that can limit 
the search space to further enhance the discord detection 
efficiency. Before describing the FindDiscord procedure, we need 
one more related definition. 
Definition 8 (Small match): Given a time series T, for any 
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subsequence P of T, Q is a non-self match of P, if Dist(P, Q) < dist, 
where dist is the nearest non-self neighbor distance of the 
current local discord of the time series, then Q is a small match 
of P and P is a small match of Q. 
The pseudo-code of Procedure FindDiscord is described as in 
Figure 3. 
Let loc be the position of local discord at time t, dist be the 
nearest non-self neighbor distance of local discord at time t and 
currDist be the distance between the local discord at the time 
point t and the new arriving subsequence. Procedure 
FindDiscord considers two possible cases:  
• Case a: If currDist < dist or loc = 1, we have to search all 
possible subsequences in the buffer to find the new local discord 
at time point t +1. For this case, the search space is the 
Candidates set which consists of all the subsequences in the 
buffer from location 1 to location |B| - n+1. 
• Case b: Otherwise, there may be some subsequences whose 
nearest non-self neighbor distances become larger than that of 
the local discord at time point t. For this case, Liu et al. suggested 
that the search space can be reduced to the Candidates set that 
consists of: (i) the small match of the first subsequence in the 
buffer, (ii) the local discord at time point t, and (iii) the new 
arriving subsequence. 
Procedure FindDiscord 
Input: B: the time series buffer at time t+1;  n: the length of 
discord; 
Output: The position and non-similar distance of local discord at 
time t+1. 
1.     read the next data point tnew; 
2.     currDist = Dist(tloc,…,tloc+n-1; tm-n+2,…,tm, tnew); 
           // loc: the position of local discord at time t; 
           // dist: the nearest non-self neighbor distance of local 
discord at time t. 

3. if currDist < dist // The case (a1) 
4.     Candiates = {the subsequence 1: |B|-n+1}; 
5. else if loc = 1 // The case (a2) 
6.      Candidates = {the subsequence 1: |B|-n+1}; 
7. else // The case (b) 
8.   Candiates = {the small match of subsequence (1,n)(t)È 

                               {The local discord at time t}È 
                               {The subsequence(m-n+1, n)(t+1)}; 
9.    [loc, dist]= Search(Candidates, n, B); 
Figure 3: Procedure FindDiscord. 
 
Liu et al. suggested that the Search function in FindDiscord 
procedure can be some discord detection function such as HOT 
SAX algorithm. 

3 HS-SQUEEZER – AN IMPROVED VARIANT 
OF HOT SAX 

In this section, we introduce our proposed algorithm, called HS-
Squeezer, for discord discovery in static time series. HS-Squeezer 
is based on clustering. The rationale behind our algorithm is as 
follows. Clustering can allocate SAX words with high similarity 
into the same cluster. So we can use clustering instead of trie 

tree in arranging the two ordering heuristics for the HOT SAX 
algorithm. 

The algorithm HS-Squeezer consists of the four following 
steps.  
Step 1: Using PAA and SAX, transform methods to convert 
extracted subsequences from the time series under the sliding 
window into SAX words. 

 Step 2: Apply Squeezer algorithm to clusters the SAX words. 

 Step 3: From the clustering results, create the two ordering 
heuristics as follows. 

Outer-loop order: The cluster with the smallest number of 
subsequences will be considered first.  Unusual subsequences 
are very likely to belong to the clusters with small number of 
subsequences. After the outer loop has exhausted this set of 
candidates, the subsequences from the other clusters are 
visited. 
Inner-loop order: the subsequences in the same cluster with the 
subsequence under consideration should be examined first. 
Subsequences in the same cluster are very likely to be highly 
similar. By that way, the inner loop can terminate early. 

Step 4: Apply discord detection process as in HOT SAX with the 
two nested loops using the two created ordering heuristics. 

Note that after using approximate approach to have the two 
ordering heuristics, in Step 4 we calculate the exact distance 
between each pair of subsequences for discord detection. Hence, 
the result would not be affected by the approximate approach. 

To estimate the suitable length of PAA-frame for each dataset 
(i.e. the PAA transformation in Step 1), we apply PLA 
segmentation with bottom up algorithm [6] to segment the time 
series into several linear segments. The average of the lengths of 
all these segments will be used to estimate the length of the 
PAA-frame. Furthermore, from the discord length n and the size 
of the PAA-frame, we can easily determine the SAX word length 
w for HS-Squeezer by the following formula: 

                              w = n/(size of PAA-frame) 

4 HS-SQUEEZER-STREAM FOR DISCORD 
DETECTION IN STREAMIG TIME SERIES 

Our proposed algorithm for online discord detection, called HS-
Squeezer-Stream, applies the framework DCD given by Liu et al. 
(2011). HS-Squeezer-Stream still uses the Candidates set 
proposed in DCD to limit the search space in finding discord 
subsequence.  The important point in our proposed algorithm is 
that while in DCD Liu et al. suggest the original HOT SAX can 
be used in the role of the Search function in the FindDiscord 
procedure, our proposed algorithm uses HS-Squeezer as the 
Search function in the FindDiscord procedure. Due to that, we 
name our proposed algorithm as HS-Squeezer-Stream. 
HS-Squeezer-Stream has to update the supporting data structure, 
i.e. the cluster structure of the SAX words, during the discord 
detection process in a streaming time series. At every new 
incoming data point, the subsequence which contains the new 
data point, after discretization, will be assigned to the suitable 
cluster and the subsequence which contains the out-of-date data 
point will be removed from its current cluster.  Due to the 
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incrementality of the Squeezer clustering algorithm, this update 
work can be achieved efficiently. 

4.1 Time Series Normalization 
HOT SAX requires normalization of the time series data. 
Therefore, at each new incoming data point, the time series 
segment in the buffer is updated and we have to normalize again 
the data in the buffer before applying discord detection in it. We 
apply Z-score normalization [3] for each normalization of the 
data in the current buffer. Our technique of normalization in this 
particular context applies a delay policy as follows.  When a new 
data point arrives, if the new mean and standard deviation of the 
current buffer become greater than the thresholds 
threshold_mean and threshold_std (given by the user) then we 
have to normalize all the data points in the buffer. Otherwise, 
only the new data point is normalized based on the current mean 
and current standard deviation. 

4.2 How to Determine the Buffer Size 
The size of the buffer can affect on the efficiency of the discord 
detection in streaming time series. If the buffer size is small, the 
detected discord results will vary so frequently.  Otherwise, if the 
buffer size is too large, the computational cost will increase 
remarkably. In this work, we estimate the buffer size based on 
the period of the time series under consideration.  The buffer size 
should be a multiple of the period of the time series in order that 
for cyclic time series, the new incoming data point and the 
obsolete data point will have some similarity.  There exist a few 
methods for periodicity detection in time series. In this work, we 
employ Autocorrelation Function to estimate the period of the 
time series [2]. The main idea of this method is that if a time 
series has a period, a significant autocorrelation coefficient will 
occur at the time lag equal to the period or multiples of the 
period. Therefore, in this work we calculate the autocorrelation 
coefficients between two subsequences C(1, n - k) and C(1+  k, n 
- k) in the same time series T at the same time lag k  varying 
from 1 to n/2. The estimated period is the value of the lag k  
which brings out the largest autocorrelation coefficient. 

The autocorrelation coefficient between two subsequences 
C(1, n - k) and C(1+  k, n - k) can be calculated by the formula: 

C= ABC0D:0EFG(A(<,EHI),A(<JI,EHI))
-KLMA(<,EHI)N.-KL(A(<JI,EHI))

   =  
P

QRS	∑ (K1	H	KP	)(K1TS	H	KPTS)		QRS
P 	

-KLMA(<,EHI)N.-KL(A(<JI,EHI))
 

where 𝑡< , 𝑡<JI	 are the two mean values of the subsequences  
C(1, n - k) and C(1+  k, n - k),  respectively and  Std(C(1, n - k)), 
Std( C(1+  k, n - k)) are the standard deviations of  the 
subsequences  C(1, n - k) and C(1+  k, n - k),  respectively. 

5 EXPERIMENTAL EVALUATION 
In this section, we describe the results of the two main 
experiments: Experiment 1 for discord detection in static time 
series (offline discord detection) and Experiment 2 for discord 
detection in streaming time series (online discord detection). 

5.1 Experiment 1: Offline Discord Detection 

For this experiment, we implemented two algorithms for discord 
detection in static time series: HOT SAX and HS-Squeezer. The 
experiment aims to compare HS-Squeezer with the original HOT 
SAX algorithm in terms of time efficiency and discord detection 
accuracy. 
This experiment was conducted on the datasets from the UCR 
Time Series Data Mining archive ([8], [9]). There are seven 
datasets used in this experiment.  The datasets are from different 
areas such as medicine, industry and science. The names and 
lengths of the seven datasets are shown in Table I. For each 
dataset in Table I, we also give the discord length n in the fourth 
column. 

During experiment with Squeezer clustering, we observe that 
the number of clusters created by Squeezer depends on the 
parameters threshold and w. Through experiment, we found out 
that the number of clusters should be in the range between 10 
and 30, and select the two parameters (threshold, w) = (0.85, 5) 
for most of the datasets.  

Table I: Length and discord length for each dataset 

Dataset 
Description 

Dataset 
Name 

Length of 
Time series 

Discord 
Length (n) 

Space Shuttle 
Marotta Valve 

(TEL 16, 
TEK 17) 

4993, 5000 
 

128 

Electrocardiogram (ECG) 21600 40 
Power Data (Power_ 

Data) 
35040 200 

Patient’s respiration 
data 

(nprs43, 
nprs44) 

18020, 
24125 

160 

Earth Rotation 
Parameters 

ERP 198400 64 

 
So the parameters for the two comparative algorithms are 

selected as follows. For HOT SAX:  w = 3, a = 3; for HS-Squeezer:  
threshold = 0.85 and w = 5 where w is the SAX word length, a is 
the size of the alphabet used in SAX transform and threshold is 
the similarity threshold used in Squeezer clustering algorithm. 
5.1.1 Effectiveness. Following the tradition established in 
previous works, such as [1], [7], [11], the accuracy of a given 
discord discovery algorithm is basically based on human 
inspection of the discords detected by that algorithm. Notice that 
in most of the seven datasets in Experiment 1, the discords have 
been annotated by experts; therefore, we can spot the discords 
by eye with not much effort. 
We compare HS-Squeezer and HOT SAX in discord detection 
accuracy over the 7 datasets.  For each dataset, we found out that 
the discord detected by HS-Squeezer is exactly the same as the 
discord detected by HOT SAX. 
 
 

Table II: Execution times of HOT SAX and HS-Squeezer 
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Dataset HOT SAX HS-Squeezer 
TEK 16 2.116 0.692 
TEK 17 2.554 0.37 
ECG 14.979 5.91 
Power_data 93.189 11.921 
nqrs43 16.599 6.097 
nqrs44 25.955 14.349 
ERP 2056.595 309.45 

 
5.1.2 Effeciency. Table II shows the runtimes (in seconds) of the 
two algorithms: HOT SAX, and HS-Squeezer in discord detection 
over the 7 datasets. From the experimental results in Table II, we 
can see that HS-Squeezer performs much faster than HOT SAX 
in all the datasets. On average, HS-Squeezer runs about 4.41 
times faster than HOT SAX. 

5.2 Experiment 2: Online Discord Detection 
For this experiment, we implemented two algorithms for discord 
detection in streaming time series: HS-Squeezer-Stream and 
Brute Force HOT SAX (BFHS). BFHS is a concrete version of the 
framework DCD (Figure 2) in which HOT SAX plays the role of 
the FindDiscord precedure for detecting discord in the time series 
segment currently in the buffer. That means BFHS has to search 
the whole buffer in each time of discord detection.   
We implemented all the algorithms with Visual C# 2013 
(Window Form), and conducted the experiment on a HP, Intel(R) 
Core(TM) i5 CPU M430 @ 2.27GHz (4 CPUs), 4GB RAM, 
Windows 8.1 Pro 64-bit. 

Table III: Length and discord length for each dataset 

Dataset 
Description 

Dataset 
Name 

Time 
series 
length 

Length of 
streaming 
time series 

Discord 
length 

Space Shuttle 
Marotta Valve 

TEL 16, 
TEK 17 

2992 
 

2000 128 

Electro- 
cardiogram 

ECG 16600 5000 40 

Power Data Power_ 
Data 

30040 5000 200 

Patient’s 
respiration data 

nprs43 13020 
 

5000 160 

Earth Rotation 
Parameters 

ERP 193400 
 

5000 64 

 
This experiment uses the datasets from the UCR Time Series 
Data Mining archive ([8], [9]). There are 5 datasets used in this 
experiment.  The names and lengths of the five datasets are 
shown in Table III. For each dataset in Table III, we also give the 
discord length n in the fifth column. 
For HS-Squeezer-Stream we have to estimate seven parameters: 
the period of the time series, the buffer length of the time series, 
the SAX word length w, the size of the alphabet a, the mean 
threshold (Mean), the threshold of standard deviation (Std) for 
data normalization and the similarity threshold (Sim) for 
Squeezer algorithm. The values of the parameters in the two 
algorithms for each dataset are shown in Table IV. 

 
Table IV: Parameters for each dataset 

 

 
5.2.1 Effectiveness. We compare HS-Squeezer-Stream to BFHS 
in discord detection accuracy over the 5 streaming time series.  
For each dataset, we found out that the discord detected by HS-
Squeezer-Stream is almost the same as that detected by BFHS. 
The reason is that both of the two algorithms use exact distances 
to find discord. The slight difference mainly comes from the 
orders in the two loops when more than one pair of 
subsequences have the same distance. 

 
Figure 4: TEK 16 time series with five periods (period length » 
1000). 
 

Figure 5: Online discord detection on TEK 16 dataset by HS-
Squeezer-Stream. 
 
Figure 4 shows the TEK 16 dataset with 5 periods (period length 
is about 1000). In Figure 5 we evaluate our HS-Squeezer-Stream 
algorithm in a real case (with dataset TEK 16). The top graph 
shows the locations of the found discords varying at each time 
point. The bottom graph shows the nearest non-self neighbor 
distance of each input subsequence at each time point. 
5.2.2 Efficiency. Table V shows the runtimes (in seconds) of the 
two algorithms: BFHS and HS-Squeezer-Stream in discord 
discovery over the 5 streaming datasets. From the experimental 
results in Table V, we can see that HS-Squeezer-Stream performs 
much faster than BFHS in all the datasets. On average, HS-
Squeezer-Stream runs about 3.32 times faster than BFHS. 

Dataset Period Buffer w a Mean Std Sim 
TEK 16 1007 1007*2 5 3 0.001 0.01 0.85 
ECG 371 371*10 5 3 0.001 0.01 0.95 
Power_data 672 672*5 4 3 0.05 0.15 0.85 
nqrs43 40 40*75 3 3 0.05 0.15 0.85 
ERP 1280 1280*2 4 3 0.001 0.01 0.95 
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Table V: Execution times of BFHS and HS-Squeezer-Stream 

Dataset BFHS HS-Squeezer-Stream 
TEK 16 1226 832 
ECG 8940 1449 
Power_data 11400 2811 
nqrs43 7740 4080 
ERP 3618 1129 

6 CONCLUSIONS 
We proposed an improved variant of HOT SAX, called HS-
Squeezer, for efficient time series discord detection. Given a raw 
time series, we represent data by SAX discretization. Based on 
SAX representation, we apply a categorical data clustering 
algorithm for detecting discord in the time series. We employ the 
clustering result to arrange two ordering heuristics for discord 
detection process. In addition, we extend HS-Squeezer to a new 
algorithm, called HS-Squeezer-Stream for online discord 
detection. We experimentally showed that this online detection 
algorithm is remarkably faster than BFHS, the brute force search 
approach which is based on the original HOT SAX. 
In the future, we plan to develop a new algorithm for discord 
discovery in streaming time series which is based on bounding 
boxes and it should be more efficient than the method given by 
Sanchez et al. in 2014 [14]. 
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