

Discord Discovery in Streaming Time Series based on an Improved
HOT SAX Algorithm

Pham Minh Chau, Bui Minh Duc, Duong Tuan Anh
Faculty of Computer Science and Engineering

Ho Chi Minh University of Technology
Ho Chi Minh City, Vietnam

{chaupm.cs, ducbk95}@gmail.com, dtanh@hcmut.edu.vn

ABSTRACT
In this paper, we propose an improved variant of HOT SAX
algorithm, called HS-Squeezer, for efficient discord detection in
static time series. HS-Squeezer employs clustering rather than
augmented trie to arrange two ordering heuristics in HOT SAX.
Furthermore, we introduce HS-Squeezer-Stream, the application
of HS-Squeezer in the framework for detecting local discords in
streaming time series. The experimental results reveal that HS-
Squeezer can detect the same quality discords as those detected
by HOT SAX but with much shorter run time. Furthermore, HS-
Squeezer-Stream demonstrates a fast response in handling time
series streams with quality local discords detected.

CCS CONCEPTS
• Information systems → Data Mining; Data Stream
Mining

KEYWORDS
Streaming time series, discord discovery, clustering.

ACM Reference format:

Pham Minh Chau, Bui Minh Duc, Duong Tuan Anh. 2018. Discord
Discovery in Streaming Time Series based on an Improved HOT SAX
Algorithm. In SoICT ’18: Ninth International Symposium on Information
and Communication Technology, December 6–7, 2018, Da Nang City, Viet
Nam. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287921.3287929

1 INTRODUCTION1
The problem of detecting unusual (abnormal, novel, deviant,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

SoICT 2018, December 6–7, 2018, Danang City, Viet Nam
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6539-0/18/12$15.00
https://doi.org/10.1145/3287921.3287929

anomalous, discord) subsequences in a time series has recently
attracted much attention. Time series anomaly detection brings
out the abnormal patterns present in a time series. Application
areas that explore such time series anomalies are, for example,
fault diagnosis, intrusion detection, fraud detection, financial
auditing and data cleansing.
There has been an extensive study on time series anomaly
detection in the literature. Various algorithms for time series
discord discovery have been proposed, such as brute-force and
HOT SAX by Keogh et al. (2005) [7]; WAT by Bu et al. (2007)
[1]; a method based on Piecewise Aggregate Approximation
(PAA) bit representation and clustering by Li et al. (2013) [11]; a
method based on segmentation and cluster-based outlier
detection by Kha and Anh (2015) [10]; and a method based on
time series segmentation and anomaly scores by Vy and Anh
(2016) [16]. Among these above-mentioned algorithms for
discord discovery in time series, HOT SAX has been considered
as the most popular algorithm. HOT SAX is an unsupervised
method of anomaly detection and has been applied in several
real applications. However, this algorithm still has one
weakness: HOT SAX still suffers from a high computational cost.
Discord detection in streaming time series has emerged as an
attractive problem recently. The task of finding the most
important discord in streaming time series arises in diverse
applications. For example, electrocardiogram time series of a
given patient often continuously arrives during his/her
treatment. However, discord detection in streaming time series is
a non-trivial task. It is challenging to adapt a discord detection
algorithm in static time series to a discord detection algorithm
for streaming time series.
As for streaming time series, there have been a few researches
works of anomaly detection that will be listed as follows. Liu et
al. in 2009 proposed a framework for discord detection in
streaming time series, called Detection of Continuous Discords
(DCD) [13]. DCD can find continuous discord from local
segments of a time series stream. One important technique in
DCD is that it limits the search space to further enhance the
discord detection efficiency. Toshniwal and Yadas (2011) [15]
introduced an extension of HOT SAX to find outliers in local
segments of a streaming time series. In this work, the criterion to
determine time series outliers is the type of deviation from
normal behavior, i.e. above or below normal. When there is a
newly incoming subsequence, the data distribution of these

24

SoICT 2018, December 2018, Da Nang, Vietnam P. Chau et al.

distances is reevaluated. Due to this reason, the algorithm incurs
high computational complexity. Yeh et al. in 2016 [17] proposed
a unifying framework that can discover motifs, discords and
shapeless from time series. This framework is based on the basic
task: finding all pair similarity joins in two time series. The basic
algorithm for the basic task, called STAMP, is based on the
calculation of sliding dot products between a query
(subsequence) and a time series which exploits Fast Fourier
Transform (FFT). Based on STAMP, the authors proposed one
algorithm for discord discovery in static time series and one
algorithm for discord discovery in streaming time series.
However, due to FFT, the complexity of STAMP is rather high,
O(n2logn). Therefore, all the time series data mining tasks such
as discord discovery, which is based on STAMP, still incur high
complexity.
Motivated by the framework given by Liu et al., in this work we
aim to develop an efficient method for discord detection in
streaming time series. This work makes two contributions. First,
we propose an improved variant of HOT SAX, called HS-
Squeezer, for efficient discord discovery in static time series. In
this algorithm, we use a clustering method instead of an
augmented trie to support the discord discovery process.
Second, we introduce HS-Squeezer-Stream, the application of
HS-Squeezer in the framework given by Liu et al. for detecting
local discords in streaming time series. The experimental results
reveal that HS-Squeezer can detect the same quality discords as
those detected by HOT SAX but with much shorter run time.
Furthermore, HS-Squeezer-Stream demonstrates a fast response
in handling time series streams with quality local discords
detected.
The rest of our paper is organized as follows. Some background
and related works are provided in Section 2. In Section 3, we
introduce the HS-Squeezer algorithm. In Section 4, we introduce
our algorithm for discord detection in streaming time series. The
extensive experiments of our two proposed algorithms are
reported in Section 5. Finally, Section 6 presents some
conclusions and remarks for future works.

2 BACKGROUND AND RELATED WORKS

2.1 Definitions
A time series discord is a subsequence that is very different from
its closest matching subsequence. However, in general, the best
matches of a given subsequence (apart from itself) tend to be
very close to the subsequence under consideration. For example,
given a certain subsequence at position p, its closest match will
be the subsequence at the position q where q is far from p just a
few points. Such matches are called trivial matches and are not
interesting. When finding discords, we should exclude trivial
matches and keep only non-self matches defined as follows.
Definition 1. (Non-self match): Given a time series T containing
a subsequence C of length n beginning at position p and a
matching subsequence M beginning at position q, we say that M
is a non-self match to C if |p – q| ³ n, i.e. C does not overlap M.
Definition 2. (Time series discord): Given a time series T, the

subsequence D in T is called the most significant discord in T if
the distance to its nearest non-self match is largest.
A streaming time series T is a semi-infinite time series sequence
of real number t1, t2, …, tn, … where tn is the most recent data
point. Given a streaming time series T, the problem is finding the
most significant discord of length l as soon as a newly incoming
subsequence C of length l exists. This implies that the discord
detection might be repeatedly executed once for every newly
incoming data point of T. In storing a streaming time series, to
avoid memory overflow, we use larger-size buffer B to contain
the local segment of the streaming time series under
consideration. In general, at time point t, suppose B contains a
time series of length n, B = t1, t2, …, tn and tnew is the newly
incoming data point. At time point t + 1, the time series in the
buffer becomes B = t2, …, tn, tnew. That is the data point t1 is
removed out of the buffer at time point t +1 and it is called the
obsolete data point. Notice that the length of the buffer is
specified in advance.

2.2 HOT SAX Algorithm
The HOT SAX algorithm was proposed by Keogh et al. in 2005
[7]. To find discord of length n in a time series T, HOT SAX
extracts subsequences of length n by shifting a sliding window of
length n across the time series T. Next, these subsequences are
converted into PAA representation [12] and then to SAX
representation [12] that has the SAX word length w. HOT SAX
puts these SAX words in an array where the index refers back to
the original subsequence. Once HOT SAX has this ordered list of
SAX words, the algorithm can place them in a tree structure
(called augmented trie) where the leaf nodes contain a linked list
index of all word occurrences that map there. The parameters we
have to supply to HOT SAX are the length of discord n, the SAX
alphabet size a, and the SAX word length w. To realize an early
exit of the for loops, HOT SAX applies the two following order
heuristics: (a) Outer loop heuristic: It first visits subsequences
corresponding to the SAX words that have the smallest word
count, and then it visits the rest of the subsequences in random
order; (b) Inner loop heuristic: for each candidate in outer loop, it
first searches its nearest non-self match in the leaf node of the
tree that has the same SAX word, and then it visits the rest of the
subsequences in random order.

2.3 Squeezer Algorithm for Clustering
Categorical Data

Squeezer [5] is a modified version of the incremental clustering
method Leader [4] for clustering categorical data. The main ideas
of Squeezer will be explained as follows.
Let A1, …, Am be a set of categorical attributes with domains D1,
…, Dm. respectively. Let the dataset D be the set of patterns
where each pattern t: t Î D1 ´…´ Dm. Let TID be the set of
unique identifiers of every pattern. For each tid ÎTID, the
attribute value for Ai of corresponding pattern is represented as
tid.Ai.
Definition 3: (Cluster) Cluster Í TID is a subset of TID.
Definition 4: Given a cluster C, the set of different attribute

25

Discord Discovery based on an Improved HOT SAX Algorithm SoICT 2018, December 2018, Da Nang, Vietnam

values on Ai with respect to C is defined as: VALi(C) = {tid Ai | tid
Î C} where 1 £ i £ m.
Definition 5: Given a cluster C, let ai Î Di, the support of ai in C
with respect to Ai is defined as: Sup(ai) = |{tid | tid.Ai = ai, tid
ÎC}|.
Definition 6: (Similarity) Given a cluster C and a pattern t with
tid Î TID, the similarity between C and tid is defined as:

 𝑆𝑖𝑚(𝐶, 𝑡𝑖𝑑) = 	∑ -./(01)
∑ -./(02)32∈5671(8)

9
:;< (1)

where ai = tid. Ai

The Squeezer algorithm has n patterns as input, similarity
threshold s as a parameter supplied by user and produces clusters
as final results. Initially, the first pattern in the database is read
in and the first cluster is constructed to contain the first pattern,
i.e. C = {1}. Then, the consequent patterns are read iteratively.
For each pattern, by the similarity function, its similarities with
all existing clusters are computed. The largest value of similarity
is chosen. If it is larger than the given threshold, s, the pattern
will be assigned to the cluster that has the largest value of
similarity. If the above condition does not hold, a new cluster
must be created with this pattern. The algorithm continues until
it has scanned all the patterns in the dataset.
The outline of the Squeezer algorithm is described as Figure 1.
Algorithm Squeezer (D, s)
 while (D has unread pattern)
 begin while
 pattern = getCurrentPattern(D);
 if (pattern.tid = 1)
 then addNewCluster(pattern.tid)
 else {
 for each existed cluster C do
 simComputation(C, pattern);
 get the max value of similarity: sim_max;
 get the corresponding Cluster Index: index;
 if sim_max ≥ s then
 addPatternToCluster (pattern, index)
 else
 addNewCluster(pattern.tid) }
 end while
 outputClusteringResult ();
Figure 1: The Squeezer algorithm.

The line simComputation(C, pattern) is computed by Eq. 1.

2.3 A Framework for Discord Detection in
Time Series Stream

Liu et al. in 2009 proposed a framework, called DCD (Detection
of Continuous Discords), for discord detection in streaming time
series [13]. One important technique in DCD is that it limits the
search space to further enhance the detection efficiency. The
pseudo-code of the framework DCD is described as in Figure 2.
In the framework DCD, we use two data structures: the buffer B
and array V. In explaining the use of array V, we need the
definition of nearest non-self neighbor distance of a subsequence
as follows.
Procedure DCD

Input: A given time series stream and the discord length of n
Output: The local discords (discord in the buffer)

1. Initialize ();
2. Read the time series data points into B // B is the buffer

3. [prev_loc, dist]=FindDiscord(B, n);
4. Output the local discord LD = [prev_loc, t]; //t is the current
time
5. Add dist into array V;
6. while (the time series stream is not stopped) do
7. Read the next data point into B;
8. [loc, dist] = FindDiscord(B, n);
9. if loc ≠ prev_loc - 1 &&	valid(dist, V) then
10. Output the local discord LD = [loc, t]; //t is the current
time
11. end if
12. prev_loc = loc;
13. Add dist into array V;
14. endwhile
Figure 2: The Framework DCD for discord detection in
streaming time series.
Definition 7: (Nearest non-self neighbor distance): Given a time
series T, for any subsequence P, Q is the nearest non-self match
of P, the distance from P to Q is the nearest non-self neighbor
distance of P.
The new incoming data points will arrive to the buffer
continuously. With the assumption that we start to find the
discord when the buffer is full. At that moment, the FindDiscord
procedure is invoked to detect the discord in the time series
segment in the buffer B. The nearest non-self neighbor distance
of the current discord is stored in the array 𝑉. Next, we read the
new incoming data point from the stream, we put it in the right
end of the buffer B and remove the left most data point in the
buffer out of the buffer. At this moment, we invoke again the
FindDiscord procedure to find the new discord. Whenever the
discord is found, we output the discord if its location is different
from that of the previous discord. The loop continues until the
stream terminates.
To find the interesting discords from the given time series
stream, we need to use the valid function which is defined as
follows.

valid(dist, V) is true if dist > mean(V)*threshold

where mean(V) is the mean value of all elements in the array V,
threshold and the size of the array V are specified in advance by
user.
A simple solution for FindDiscord procedure is to use the existing
window-based algorithm such as HOT SAX to find the discord
from the current buffer. In that case, we called the online discord
detection algorithm as Brute-force HOT SAX (BFHS) algorithm.
BFHS is not efficient since it has to search the whole buffer in
each time of discord detection.
Liu et al. proposed a new FindDiscord procedure that can limit
the search space to further enhance the discord detection
efficiency. Before describing the FindDiscord procedure, we need
one more related definition.
Definition 8 (Small match): Given a time series T, for any

26

SoICT 2018, December 2018, Da Nang, Vietnam P. Chau et al.

subsequence P of T, Q is a non-self match of P, if Dist(P, Q) < dist,
where dist is the nearest non-self neighbor distance of the
current local discord of the time series, then Q is a small match
of P and P is a small match of Q.
The pseudo-code of Procedure FindDiscord is described as in
Figure 3.
Let loc be the position of local discord at time t, dist be the
nearest non-self neighbor distance of local discord at time t and
currDist be the distance between the local discord at the time
point t and the new arriving subsequence. Procedure
FindDiscord considers two possible cases:
• Case a: If currDist < dist or loc = 1, we have to search all
possible subsequences in the buffer to find the new local discord
at time point t +1. For this case, the search space is the
Candidates set which consists of all the subsequences in the
buffer from location 1 to location |B| - n+1.
• Case b: Otherwise, there may be some subsequences whose
nearest non-self neighbor distances become larger than that of
the local discord at time point t. For this case, Liu et al. suggested
that the search space can be reduced to the Candidates set that
consists of: (i) the small match of the first subsequence in the
buffer, (ii) the local discord at time point t, and (iii) the new
arriving subsequence.
Procedure FindDiscord
Input: B: the time series buffer at time t+1; n: the length of
discord;
Output: The position and non-similar distance of local discord at
time t+1.
1. read the next data point tnew;
2. currDist = Dist(tloc,…,tloc+n-1; tm-n+2,…,tm, tnew);
 // loc: the position of local discord at time t;
 // dist: the nearest non-self neighbor distance of local
discord at time t.

3. if currDist < dist // The case (a1)
4. Candiates = {the subsequence 1: |B|-n+1};
5. else if loc = 1 // The case (a2)
6. Candidates = {the subsequence 1: |B|-n+1};
7. else // The case (b)
8. Candiates = {the small match of subsequence (1,n)(t)È

 {The local discord at time t}È
 {The subsequence(m-n+1, n)(t+1)};
9. [loc, dist]= Search(Candidates, n, B);
Figure 3: Procedure FindDiscord.

Liu et al. suggested that the Search function in FindDiscord
procedure can be some discord detection function such as HOT
SAX algorithm.

3 HS-SQUEEZER – AN IMPROVED VARIANT
OF HOT SAX

In this section, we introduce our proposed algorithm, called HS-
Squeezer, for discord discovery in static time series. HS-Squeezer
is based on clustering. The rationale behind our algorithm is as
follows. Clustering can allocate SAX words with high similarity
into the same cluster. So we can use clustering instead of trie

tree in arranging the two ordering heuristics for the HOT SAX
algorithm.

The algorithm HS-Squeezer consists of the four following
steps.
Step 1: Using PAA and SAX, transform methods to convert
extracted subsequences from the time series under the sliding
window into SAX words.

 Step 2: Apply Squeezer algorithm to clusters the SAX words.

 Step 3: From the clustering results, create the two ordering
heuristics as follows.

Outer-loop order: The cluster with the smallest number of
subsequences will be considered first. Unusual subsequences
are very likely to belong to the clusters with small number of
subsequences. After the outer loop has exhausted this set of
candidates, the subsequences from the other clusters are
visited.
Inner-loop order: the subsequences in the same cluster with the
subsequence under consideration should be examined first.
Subsequences in the same cluster are very likely to be highly
similar. By that way, the inner loop can terminate early.

Step 4: Apply discord detection process as in HOT SAX with the
two nested loops using the two created ordering heuristics.

Note that after using approximate approach to have the two
ordering heuristics, in Step 4 we calculate the exact distance
between each pair of subsequences for discord detection. Hence,
the result would not be affected by the approximate approach.

To estimate the suitable length of PAA-frame for each dataset
(i.e. the PAA transformation in Step 1), we apply PLA
segmentation with bottom up algorithm [6] to segment the time
series into several linear segments. The average of the lengths of
all these segments will be used to estimate the length of the
PAA-frame. Furthermore, from the discord length n and the size
of the PAA-frame, we can easily determine the SAX word length
w for HS-Squeezer by the following formula:

 w = n/(size of PAA-frame)

4 HS-SQUEEZER-STREAM FOR DISCORD
DETECTION IN STREAMIG TIME SERIES

Our proposed algorithm for online discord detection, called HS-
Squeezer-Stream, applies the framework DCD given by Liu et al.
(2011). HS-Squeezer-Stream still uses the Candidates set
proposed in DCD to limit the search space in finding discord
subsequence. The important point in our proposed algorithm is
that while in DCD Liu et al. suggest the original HOT SAX can
be used in the role of the Search function in the FindDiscord
procedure, our proposed algorithm uses HS-Squeezer as the
Search function in the FindDiscord procedure. Due to that, we
name our proposed algorithm as HS-Squeezer-Stream.
HS-Squeezer-Stream has to update the supporting data structure,
i.e. the cluster structure of the SAX words, during the discord
detection process in a streaming time series. At every new
incoming data point, the subsequence which contains the new
data point, after discretization, will be assigned to the suitable
cluster and the subsequence which contains the out-of-date data
point will be removed from its current cluster. Due to the

27

Discord Discovery based on an Improved HOT SAX Algorithm SoICT 2018, December 2018, Da Nang, Vietnam

incrementality of the Squeezer clustering algorithm, this update
work can be achieved efficiently.

4.1 Time Series Normalization
HOT SAX requires normalization of the time series data.
Therefore, at each new incoming data point, the time series
segment in the buffer is updated and we have to normalize again
the data in the buffer before applying discord detection in it. We
apply Z-score normalization [3] for each normalization of the
data in the current buffer. Our technique of normalization in this
particular context applies a delay policy as follows. When a new
data point arrives, if the new mean and standard deviation of the
current buffer become greater than the thresholds
threshold_mean and threshold_std (given by the user) then we
have to normalize all the data points in the buffer. Otherwise,
only the new data point is normalized based on the current mean
and current standard deviation.

4.2 How to Determine the Buffer Size
The size of the buffer can affect on the efficiency of the discord
detection in streaming time series. If the buffer size is small, the
detected discord results will vary so frequently. Otherwise, if the
buffer size is too large, the computational cost will increase
remarkably. In this work, we estimate the buffer size based on
the period of the time series under consideration. The buffer size
should be a multiple of the period of the time series in order that
for cyclic time series, the new incoming data point and the
obsolete data point will have some similarity. There exist a few
methods for periodicity detection in time series. In this work, we
employ Autocorrelation Function to estimate the period of the
time series [2]. The main idea of this method is that if a time
series has a period, a significant autocorrelation coefficient will
occur at the time lag equal to the period or multiples of the
period. Therefore, in this work we calculate the autocorrelation
coefficients between two subsequences C(1, n - k) and C(1+ k, n
- k) in the same time series T at the same time lag k varying
from 1 to n/2. The estimated period is the value of the lag k
which brings out the largest autocorrelation coefficient.

The autocorrelation coefficient between two subsequences
C(1, n - k) and C(1+ k, n - k) can be calculated by the formula:

C= ABC0D:0EFG(A(<,EHI),A(<JI,EHI))
-KLMA(<,EHI)N.-KL(A(<JI,EHI))

 =
P

QRS	∑ (K1	H	KP)(K1TS	H	KPTS)		QRS
P 	

-KLMA(<,EHI)N.-KL(A(<JI,EHI))

where 𝑡< , 𝑡<JI	 are the two mean values of the subsequences
C(1, n - k) and C(1+ k, n - k), respectively and Std(C(1, n - k)),
Std(C(1+ k, n - k)) are the standard deviations of the
subsequences C(1, n - k) and C(1+ k, n - k), respectively.

5 EXPERIMENTAL EVALUATION
In this section, we describe the results of the two main
experiments: Experiment 1 for discord detection in static time
series (offline discord detection) and Experiment 2 for discord
detection in streaming time series (online discord detection).

5.1 Experiment 1: Offline Discord Detection

For this experiment, we implemented two algorithms for discord
detection in static time series: HOT SAX and HS-Squeezer. The
experiment aims to compare HS-Squeezer with the original HOT
SAX algorithm in terms of time efficiency and discord detection
accuracy.
This experiment was conducted on the datasets from the UCR
Time Series Data Mining archive ([8], [9]). There are seven
datasets used in this experiment. The datasets are from different
areas such as medicine, industry and science. The names and
lengths of the seven datasets are shown in Table I. For each
dataset in Table I, we also give the discord length n in the fourth
column.

During experiment with Squeezer clustering, we observe that
the number of clusters created by Squeezer depends on the
parameters threshold and w. Through experiment, we found out
that the number of clusters should be in the range between 10
and 30, and select the two parameters (threshold, w) = (0.85, 5)
for most of the datasets.

Table I: Length and discord length for each dataset

Dataset
Description

Dataset
Name

Length of
Time series

Discord
Length (n)

Space Shuttle
Marotta Valve

(TEL 16,
TEK 17)

4993, 5000

128

Electrocardiogram (ECG) 21600 40
Power Data (Power_

Data)
35040 200

Patient’s respiration
data

(nprs43,
nprs44)

18020,
24125

160

Earth Rotation
Parameters

ERP 198400 64

So the parameters for the two comparative algorithms are

selected as follows. For HOT SAX: w = 3, a = 3; for HS-Squeezer:
threshold = 0.85 and w = 5 where w is the SAX word length, a is
the size of the alphabet used in SAX transform and threshold is
the similarity threshold used in Squeezer clustering algorithm.
5.1.1 Effectiveness. Following the tradition established in
previous works, such as [1], [7], [11], the accuracy of a given
discord discovery algorithm is basically based on human
inspection of the discords detected by that algorithm. Notice that
in most of the seven datasets in Experiment 1, the discords have
been annotated by experts; therefore, we can spot the discords
by eye with not much effort.
We compare HS-Squeezer and HOT SAX in discord detection
accuracy over the 7 datasets. For each dataset, we found out that
the discord detected by HS-Squeezer is exactly the same as the
discord detected by HOT SAX.

Table II: Execution times of HOT SAX and HS-Squeezer

28

SoICT 2018, December 2018, Da Nang, Vietnam P. Chau et al.

Dataset HOT SAX HS-Squeezer
TEK 16 2.116 0.692
TEK 17 2.554 0.37
ECG 14.979 5.91
Power_data 93.189 11.921
nqrs43 16.599 6.097
nqrs44 25.955 14.349
ERP 2056.595 309.45

5.1.2 Effeciency. Table II shows the runtimes (in seconds) of the
two algorithms: HOT SAX, and HS-Squeezer in discord detection
over the 7 datasets. From the experimental results in Table II, we
can see that HS-Squeezer performs much faster than HOT SAX
in all the datasets. On average, HS-Squeezer runs about 4.41
times faster than HOT SAX.

5.2 Experiment 2: Online Discord Detection
For this experiment, we implemented two algorithms for discord
detection in streaming time series: HS-Squeezer-Stream and
Brute Force HOT SAX (BFHS). BFHS is a concrete version of the
framework DCD (Figure 2) in which HOT SAX plays the role of
the FindDiscord precedure for detecting discord in the time series
segment currently in the buffer. That means BFHS has to search
the whole buffer in each time of discord detection.
We implemented all the algorithms with Visual C# 2013
(Window Form), and conducted the experiment on a HP, Intel(R)
Core(TM) i5 CPU M430 @ 2.27GHz (4 CPUs), 4GB RAM,
Windows 8.1 Pro 64-bit.

Table III: Length and discord length for each dataset

Dataset
Description

Dataset
Name

Time
series
length

Length of
streaming
time series

Discord
length

Space Shuttle
Marotta Valve

TEL 16,
TEK 17

2992

2000 128

Electro-
cardiogram

ECG 16600 5000 40

Power Data Power_
Data

30040 5000 200

Patient’s
respiration data

nprs43 13020

5000 160

Earth Rotation
Parameters

ERP 193400

5000 64

This experiment uses the datasets from the UCR Time Series
Data Mining archive ([8], [9]). There are 5 datasets used in this
experiment. The names and lengths of the five datasets are
shown in Table III. For each dataset in Table III, we also give the
discord length n in the fifth column.
For HS-Squeezer-Stream we have to estimate seven parameters:
the period of the time series, the buffer length of the time series,
the SAX word length w, the size of the alphabet a, the mean
threshold (Mean), the threshold of standard deviation (Std) for
data normalization and the similarity threshold (Sim) for
Squeezer algorithm. The values of the parameters in the two
algorithms for each dataset are shown in Table IV.

Table IV: Parameters for each dataset

5.2.1 Effectiveness. We compare HS-Squeezer-Stream to BFHS
in discord detection accuracy over the 5 streaming time series.
For each dataset, we found out that the discord detected by HS-
Squeezer-Stream is almost the same as that detected by BFHS.
The reason is that both of the two algorithms use exact distances
to find discord. The slight difference mainly comes from the
orders in the two loops when more than one pair of
subsequences have the same distance.

Figure 4: TEK 16 time series with five periods (period length »
1000).

Figure 5: Online discord detection on TEK 16 dataset by HS-
Squeezer-Stream.

Figure 4 shows the TEK 16 dataset with 5 periods (period length
is about 1000). In Figure 5 we evaluate our HS-Squeezer-Stream
algorithm in a real case (with dataset TEK 16). The top graph
shows the locations of the found discords varying at each time
point. The bottom graph shows the nearest non-self neighbor
distance of each input subsequence at each time point.
5.2.2 Efficiency. Table V shows the runtimes (in seconds) of the
two algorithms: BFHS and HS-Squeezer-Stream in discord
discovery over the 5 streaming datasets. From the experimental
results in Table V, we can see that HS-Squeezer-Stream performs
much faster than BFHS in all the datasets. On average, HS-
Squeezer-Stream runs about 3.32 times faster than BFHS.

Dataset Period Buffer w a Mean Std Sim
TEK 16 1007 1007*2 5 3 0.001 0.01 0.85
ECG 371 371*10 5 3 0.001 0.01 0.95
Power_data 672 672*5 4 3 0.05 0.15 0.85
nqrs43 40 40*75 3 3 0.05 0.15 0.85
ERP 1280 1280*2 4 3 0.001 0.01 0.95

29

Discord Discovery based on an Improved HOT SAX Algorithm SoICT 2018, December 2018, Da Nang, Vietnam

Table V: Execution times of BFHS and HS-Squeezer-Stream

Dataset BFHS HS-Squeezer-Stream
TEK 16 1226 832
ECG 8940 1449
Power_data 11400 2811
nqrs43 7740 4080
ERP 3618 1129

6 CONCLUSIONS
We proposed an improved variant of HOT SAX, called HS-
Squeezer, for efficient time series discord detection. Given a raw
time series, we represent data by SAX discretization. Based on
SAX representation, we apply a categorical data clustering
algorithm for detecting discord in the time series. We employ the
clustering result to arrange two ordering heuristics for discord
detection process. In addition, we extend HS-Squeezer to a new
algorithm, called HS-Squeezer-Stream for online discord
detection. We experimentally showed that this online detection
algorithm is remarkably faster than BFHS, the brute force search
approach which is based on the original HOT SAX.
In the future, we plan to develop a new algorithm for discord
discovery in streaming time series which is based on bounding
boxes and it should be more efficient than the method given by
Sanchez et al. in 2014 [14].

ACKNOWLEDGEMENT
We are grateful to Prof. Eamonn J. Keogh for kindly providing
necessary datasets for the research work.

REFERENCES
[1] Y. Bu, T.W. Leung, A.W.C. Fu, E. Keogh, J. Pei, and S. Meshkin. 2007. WAT:

Finding top-k discords in time series database. In Proc. of 2007 SIAM
International Conference on Data Mining, Minneapolis, Minnesota, USA, pp.
449-454.

[2] F. X. Diebold. 2007. Elements of Forecasting, Fourth Edition. Thomson South-
Western.

[3] J. Han and M. Kamber. 2011. Data Mining: Concepts and Techniques, 3rd
Edition. Morgan Kaufmann Publishing.

[4] J. A. Hartigan. 1975. Clustering Algorithms, John Wiley & Sons.
[5] Z. He, X. Xu and S. Deng. 2002. Squeezer: An Efficient Algorithm for

Clustering Categorical Data. J. Computer Science and Technology, Vol. 17, No.
5, 611-624.

[6] E. Keogh, S. Chu, D. Hart, M. Pazzani. 2002. An Online Algorithm for
Clustering Categorical Data. J. Computer Science and Technology, Vol. 17, no.
5, 611-624.

[7] E. Keogh, J. Lin and A. Fu. 2005. HOT SAX: efficiently finding the most
unusual time series subsequence. In Proc. of 5th IEE Int. Conf. on Data Mining,
(ICDM), Houston, Texas, pp. 226-233.

[8] E. Keogh, J. Lin, and A. Fu, [online] http://www.cs.ucr.edu/~eamonn/discords/.
Accessed in 2017.

[9] E. Keogh and T. Folias. The UCR Time Series Data Mining Archive.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].

[10] N.H. Kha, D.T. Anh. 2015. From cluster-based outlier detection to time series
discord discovery. Trends and Applications in Knowledge Discovery and Data
Mining-PAKDD 2015 Workshops, Ho Chi Minh City, Vietnam, May, X..L.Li et
al. (Eds.), LNAI 9441, Springer, 16-28.

[11] G. Li, O. Braysy, L. Jiang, Z. Wu, Y. Wang. 2013. Finding time series discord
based on bit representation clustering. Knowledge-Based Systems, vol.52, pp.
243-254.

[12] J. Lin, E. Keogh, S. Lonardi, B. Chiu. 2003. Symbolic representation of time
series, with implications for streaming algorithms. In Proc. of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, San Diego, CA, June 13.

[13] Y. Liu, X. Chen, F. Wang, J. Yin. 2009. Efficient Detection of Discords for Time

Series Stream. Q.Li et al.(eds), Advances in Data and Web Management, vol.
5446, pp. 629-634.

[14] H. Sanchez, B. Bustos. 2014. Anomaly Detection in Streaming Time Series
Based on Bounding Boxes. In Traina A.J.M., Traina C., Cordeiro R.L.F. (eds)
Similarity Search and Applications. SISAP 2014. LNCS 882,. Springer.

[15] D. Toshniwal and S. Yadav. 2011. 'Adaptive outlier detection in streaming time
series. In Proc. of International Conference on Asia Agriculture and Animal.
ICAAA 2011, Hong Kong, China, pp. 186-191, 2011

[16] N. D. K. Vy, D. T. Anh. 2016. Detecting Variable Length Anomaly Patterns in
Time Series Data. In Proc. of Int. Conf. on Data Mining and Big Data (DMBD
2016), Bali, Indonesia, June 25-30, Y. Tan, Y. Shi (Eds.), LNCS 9714, Springer,
pp. 279-287.

[17] C.C.M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H.A. Dau, D.F. Silva, A.
Mueen, E. Keogh. 2016. Matrix Profile I: All Pairs Similarity Joins for Time
Series: A Unifying View that Includes Motifs, Discords and Shapelets. In 2016
IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain,
pp. 1317-1322.

30

