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Abstract—Time series discord detection is an important 
problem in various applications. In this work, we propose a version 
of Heuristic Discord Discovery (HDD) algorithm, called HDD-
MBR, for efficient discord detection in static time series. HDD-
MBR employs R-tree as a supporting data structure to arrange 
two ordering heuristics in HDD. Furthermore, we introduce HDD-
MBR-Stream, the application of HDD-MBR in the framework 
given by Liu et al. for detecting local discords in streaming time 
series. The experimental results reveal that HDD-MBR can detect 
the same quality discords as those detected by HOT SAX but with 
much shorter run time. Moreover, HDD-MBR-Stream 
demonstrates a fast response in handling time series streams with 
quality local discords detected.  

Keywords—streaming time series, discord discovery, R-Tree 

I. INTRODUCTION 

The problem of detecting unusual (abnormal, novel, deviant, 
anomalous, discord) subsequences in a time series has recently 
attracted much attention. Time series anomaly detection brings 
out the abnormal patterns present in a time series. Application 
areas that explore such time series anomalies are, for example, 
fault diagnosis, intrusion detection, fraud detection, auditing and 
data cleansing.  

There has been an extensive study on time series anomaly 
detection in the literature. Various algorithms for time series 
discord discovery have been proposed, such as brute-force and 
HOT SAX by Keogh et al. [9] and WAT by Bu et al. [1]; a 
method based on neural-network by Oliveira et al. [19]; a 
method based on one-class support vector machine by Ma and 
Perkins [18]; a method based on segmentation and Finite State 
Automata by Salvador and Chan [21]; a method based on time 
series segmentation and anomaly scores by Leng et al. [14];  an 
extension of HOT SAX based on iSAX symbolic representation 
by Buu and Anh [2]; a method based on Piecewise Aggregate 
Approximation (PAA) bit representation and clustering by Li et 
al. [15]; and a method based on segmentation and cluster-based 
outlier detection by Kha and Anh [13].  These above-mentioned 
algorithms for anomaly detection are classified into three 
categories: window-based methods, segmentation-based 
methods and classification-based methods [3]. In the window-
based category, HOT SAX has been considered as the most 
popular algorithm. HOT SAX is an unsupervised method of 

anomaly detection and has been applied in several real 
applications. However this algorithm still has some weaknesses 
as follows. Users of HOT SAX are required to choose suitable 
values for the parameters such as the discord length, word-length 
and/or alphabet-size, which are not intuitive. Besides, HOT SAX 
still suffers from a high computational cost.  

Nowadays, discord detection in streaming time series has 
emerged as an attractive problem. The task of finding the most 
important discord in streaming time series arises in diverse 
applications. Examples of these applications are online stock 
analysis, sensor networks, health-care monitoring, earthquake 
monitoring. However, discord detection in streaming time 
series is a non-trivial task. A streaming time series is possible 
to be read only once and the length of a streaming time series 
can be very large. Therefore, it is challenging to adapt a discord 
detection algorithm in static time series to a discord detection 
algorithm for streaming time series. 

As for streaming time series, there have been a few research 
works of anomaly detection which will be listed as follows. Zhu 
and Shasha, in 2003 [23] introduced an online algorithm to find 
abnormal aggregates or busts in data streams. This online 
algorithm could monitor streaming time series on elastic 
windows. However, the definition of bursts introduced by Zhu 
and Shasha is different from that of time series discords given 
by Keogh et al. [9] which is commonly-used. Liu et al. in 2009 
presented a framework for discord detection in streaming time 
series called Detection of Continuous Discords (DCD) [17]. 
DCD can find continuous discords from local segments of a 
time series stream. One important technique in DCD is that it 
limits the search space to further enhance the discord detection 
efficiency. Toshniwal and Yadav [22] introduced an extension 
of HOT SAX to find outliers in local segments of a streaming 
time series. In this work, the criterion to determine time series 
outliers is the type of deviation from normal behavior, i.e. above 
or below normal. When there is a newly incoming subsequence, 
the data distribution of these distances is reevaluated. Due to 
this reason, this algorithm has high computational complexity. 
Sanchez and Bustos in 2014 [20] proposed a method for discord 
detection in streaming time series which employs bounding 
boxes and R-tree to arrange two ordering heuristics for two 
loops in discord detection process. 

Motivated by the framework given by Liu et al. [17] and the 
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idea of using bounding boxes from the work by Sanchez and 
Bustos, in this work we aim to develop an efficient method for 
discord detection in streaming time series. This work makes two 
contributions. First, we propose a version of HDD, called HDD-
MBR, for efficient discord discovery in static time series. In this 
algorithm, we use a supporting data structure, R-tree, to arrange 
two ordering heuristics in the discord discovery process.  
Second, we introduce HDD-MBR-Stream, the application of 
HDD-MBR in the framework given by Liu et al. [17] for 
detecting local discords in streaming time series. The 
experimental results reveal that HDD-MBR can detect the same 
quality discords as those detected by HOT SAX but with much 
shorter run time. Furthermore, HDD-MBR-Stream 
demonstrates a fast response in handling time series streams 
with quality local discords detected. 

The rest of our paper is organized as follows. Some 
background related to finding discords in streaming time series 
is provided in Section 2. In section 3, we introduce the HDD-
MBR algorithm. In section 4, we introduce our algorithm for 
discord detection in streaming time series. The extensive 
experiments of our two proposed algorithms are reported in 
Section 5. Finally, Section 6 presents some conclusions and 
remarks for future works. 

II. BACKGROUND AND RELATED WORKS 

A. Definitions 

A time series discord is a subsequence that is very different 
from its closest matching subsequence. However, in general, the 
best matches of a given subsequence (apart from itself) tend to 
be very close to the subsequence under consideration. For 
example, given a certain subsequence at position p, its closest 
match will be the subsequence at the position q where q is far 
from p just a few points. Such matches are called trivial matches 
and are not interesting. When finding discords, we should 
exclude trivial matches and keep only non-self matches defined 
as follows [9]. 

Definition 1. (Non-self match): Given a time series T containing 
a subsequence C of length n beginning at position p and a 
matching subsequence M beginning at the position q, we say 
that M is a non-self match to C if |p – q|  n, i.e. C does not 
overlap M. 

Definition 2. (Time series discord): Given a time series T, the 
subsequence D in T is called the most significant discord in T if 
the distance to its nearest non-self match is largest.  

A streaming time series T is a semi-infinite time series 
sequence of real numbers t1, t2,…, tn,.. where tn is the most recent 
data point. Given a streaming time series T, the problem is 
finding the most significant discord of length l as soon as a newly 
incoming subsequence C of length l exists. This implies that the 
discord detection might be repeatedly executed once for every 
newly incoming data point of T. In storing a streaming time 
series, to avoid memory overflow, we use large-size buffer B to 
contain the local segment of the streaming time series under 
consideration. In general, at time point t, suppose B contains n 
last values of the time series, B = t1, t2,…,tn and tnew is the new 
coming data point. At time point t + 1, the time series in the 

buffer becomes B =  t2,…,tn, tnew. That means the data point t1 is 
removed out of the buffer at time point t + 1and it is considered 
as the obsolete data point. Notice that the length of the buffer is 
specified in advance. 

B. HDD Algorithm 

The discord detection problem can be easily solved by a 
brute force search using a nested loop. The outer loop takes each 
subsequence as a possible candidate, and the inner loop is used 
to find the candidate’s nearest non-self match. The candidate that 
has the greatest such value is the discord. The complexity of the 
brute-force algorithm is O(N2) where N is the number of 
subsequences.  

To improve the brute-force algorithm, Keogh et al., 2005 [9] 
proposed a generic algorithm, called Heuristic Discord 
Discovery (HDD), for efficient discord detection. This algorithm 
requires two heuristics that generate two ordered list of 
subsequences: one for the outer loop and the other one for the 
inner loop. The heuristic Outer is useful for quickly finding the 
best candidate, and the heuristic Inner is useful for quickly 
finding the best nearest non-self match. We break out of the inner 
loop if the distance is less than the best-so-far discord distance. 

C. A Lower Bounding Technique 

Keogh et al. proposed a lower bounding function, called 
LB_Keogh, in 2004 [12] which is described as follows. 

Given Q a sequence of length n, we can use a parameter r to 
define two new sequences U and L: 

Ui = max(Qi-r: Qi+r) 

Li = min(Qi-r:Qi+r) 

U and L stand for Upper and Lower, respectively; and the two 
sequences form a bounding envelope that encloses Q from 
above and below. An obvious property of U and L is the 
following: ∀i, Li ≤ Qi ≤ Ui 

Having defined U and L, Keogh et al. use them to define a 
lower bounding measure between a sequence C with a query 
sequence Q. 

LB_Keogh(Q,C) =  

To reduce the dimensionality, a sequence C of length n can 
be represented by Piecewise Aggregate Approximating (PAA) 
transform [8] in a lower w dimension to a vector  =  

  (w < n). The value  can be computed by the formula: 

 

Using PAA representation of a sequence, the two PAA 
transformed sequences of U and L, denoted as and , can be 
computed by the following. 

max( ) 

(1) 

(2) 
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min( ) 

The two sequences   can work as the upper 
boundary and the lower boundary which form a bounding 
rectangle enclosing the sequence Q with the same roles as the 
curves U and L (see Fig. 1).   

Given a candidate sequence C, transformed to  by PAA. 
Suppose our index structure contains a leaf node and let R = (L, 
H) be the minimum bounding rectangle (MBR) associated with 
the leaf node, where L = {l1, l2,…, lN} and H = { h1, h2,…, hN} 
are the lower and higher endpoints of the major diagonal of R. 
Given the above, the MINDIST function that returns the lower 
bounding measure of the distance between a sequence C and a 
minimum bounding rectangle R is defined as. 

  MINDIST( , R) =  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1. (Top) A subsection of a sequence with its associated functions. 
(Bottom) An illustration of the MINDIST function. ([12]). 

D. Using R-Tree in Discord Detection in Streaming Time 
Series 

The discord detection algorithm that uses bounding boxes 
(i.e. minimum bounding rectangles) was proposed by Sanchez 
and Bustos [20] in 2014. 

This algorithm uses an R-tree to search on the subsequences 
extracted from a time series. For each subsequence Cp = {c1,…, 
cn} from time series T, we generate a minimum bounding 
rectangle ( , ) of Cp ,  and   are the PAA representations 
of the bounding curve U and L of Cp,  then this rectangle will be 
inserted to a leaf node of the R-tree. After constructing the R-

tree, the start position of each subsequence is stored into an 
integer array which is associated with a particular entry in a leaf 
node. 

There are three important operations in R-Tree: searching, 
inserting and deleting. In inserting a subsequence into a leaf 
node, the subsequence is stored as an entry in a leaf node. If this 
node is overflow, it will be split and the splits may propagate up 
the tree. According to Guttman [6], there are three techniques 
for splitting: exhaustive, quadratic-cost and linear-cost. 

Given a leaf node, if a subsequence in it is deleted and the 
node might have too few entries, we have to eliminate the node 
and relocate its entries. Node elimination may propagate 
upward as necessary. 

Based on the R-tree, the outer order and the inner order can 
be established as follows.  

• Outer Loop Heuristic: First, the algorithm visits all the 
subsequences in the MBR which contains the minimum number 
of subsequences. Then, the algorithm visits the rest of the 
subsequence in random number. The heuristic ensures that the 
subsequences that are most isolated will be visited at the 
beginning of the search as potential candidates. 

• Inner Loop Heuristic: First, the algorithm visits all 
subsequences bounded in Rj, such that MINDIST (  ) < 
MINDIST (  ). Then, the algorithm visits the rest of the 
subsequence in random number. This heuristic enables us to 
first visit all the subsequences that are most similar to Cp, 
increasing the probability of early termination of the loop.  The 
MINDIST function is calculated by Eq. 3. 

E. A Framework for Discord Detection in Streaming Time 
Series 

Liu et al. in 2009 proposed a framework, called DCD 
(Detection of Continuous Discords), for discord detection in 
streaming time series [17]. One important technique in DCD is 
that it limits the search space to further enhance the detection 
efficiency. The pseudo-code of the framework DCD is 
described as in Fig. 2. 

Procedure DCD 
Input: A given time series stream and the length of discord n 
Output: The local discords (discord in the buffer) 
1. Initialize (); 
2. Read the time series data points into B; // B is the buffer  
3. [prev_loc, dist] = FindDiscord(B, n); 
4. Output the local discord LD ≡ [prev_loc, t]; // t is the 

current time;  
5. Add dist into array V; 
6. while (the time series stream is not stopped) do 
7.     Read the next data point into B; 
8.     [loc, dist] = FindDiscord(B, n); 
9.     if loc != prev_loc - 1 && valid(dist,V) then 
10.          Output the local discord LD ≡ [loc, t ]; // t is the 

current time; 
11.      end // end of if 
12.      prev_loc = loc; 
13.      Add dist into array V; 

(3) 
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14.  end // end of While 
 

Fig. 2. The framework DCD for discord detection in streaming time series 

In the framework DCD, we use two data structures: the 
buffer B and array . In explaining the use of array V we need 
the definition of nearest non-self neighbor distance of a 
subsequence as follows. 

Definition 3 (Nearest non-self neighbor distance ): Given a 
time series T, for any subsequence P, Q is the nearest nonself 
match of  P,  the distance from P to Q is the nearest non-self 
neighbor distance of P.  

The new incoming data points will arrive to the buffer 
continuously. With the assumption that we start to find the 
discord when the buffer is full. At that moment the FindDiscord 
procedure is invoked to detect the discord in the time series 
segment in the buffer B. The nearest non-self neighbor distance 
of the current discord is stored in the array . Next, we read the 
new incoming data point from the stream, we put it in the right 
end of the buffer B and remove the left most data point in the 
buffer out of the buffer. At this moment, we invoke again the 
FindDiscord procedure to find the new discord. Whenever the 
discord is found, we output the discord if its location is different 
from that of the previous discord. The loop continues until the 
stream terminates.  

To find the interesting discords from the given time series 
stream, we need to use the valid function which is defined as 
follows.  

valid(dist, V)  is true if dist > meand(V)*threshold 

where mean(V) is the mean value of all elements in the array V, 
threshold and the size of the array V are specified in advance by 
user. 

A simple solution for FindDiscord procedure is to use the 
existing window-based algorithm such as HOT SAX to find the 
discord from the current buffer. In that case, we called the 
online discord detection algorithm as Brute-force HOT SAX 
(BFHS) algorithm. BFHS is not efficient since it has to search 
the whole buffer in each time of discord detection.   

Liu et al. proposed a new FindDiscord procedure that can 
limit the search space to further enhance the discord detection 
efficiency. Before describing the FindDiscord procedure, we 
need one more related definition. 

Definition 4 (Small match): Given a time series T, for any 
subsequence P of T, Q is the non-self match of P, if Dist(P, Q) 
< dist, where dist is the nearest non-self neighbor distance of the 
current local discord of the time series, then Q is a small match 
of P and P is a small match of Q. 

The pseudo-code of Procedure FindDiscord is described as 
in Fig. 3. 
 

Let loc be the position of local discord at time t, dist be the 
nearest non-self neighbor distance of local discord at time t and 
currDist be the distance between the local discord at the time 
point t and the new arriving subsequence. Procedure 
FindDiscord considers two possible cases: 

• Case a: If currDist < dist or loc=1, we have to search all 
possible subsequences in the buffer to find the new local 
discord at time point t +1. For this case, the search space is 
the Candidates set which consists of all the subsequences 
in the buffer from location 1 to location |B|-n+1. 

• Case b: Otherwise, there may be some subsequences whose 
nearest non-self neighbor distances become larger than that 
of the local discord at time point t. For this case, Liu et al. 
suggested that the search space can be reduced to the 
Candidates set that consists of: (i) the small match of the 
first subsequence in the buffer, (ii) the local discord at the 
time point t, and (iii) the new arriving subsequence. 

Procedure FindDiscord 
Input: B: the time series buffer at time t+1;  n: the length of 

discord; 
Output: The position and non-similar distance of local discord 

at time t+1. 
1. read the next data point tnew; 
2.  currDist = Dist(tloc,…,tloc+n-1, tm-n+2,…, tm, tnew); /* loc: the 

position of local discord at time t;  
          /* dist: the nearest non-self neighbor distance of local 

discord at time t.  
3. if currDist < dist // The case (a1) 
4.     Candidate = 1:|B|-n+1; 
5. else if loc=1 // The case (a2) 
6.     Candidates = 1:|B|-n+1; 
7. else // The case (b) 
8.     Candidates = {The small match of subsequence (1, 

n)(t)}  {The local discord at time t}  
                                {The subsequence (m-n+1, n)(t+1) }; 
9. [loc, dist] = Search(Candidates, n, B); 

 
Fig. 3.  Procedure FindDiscord 

Liu et al. [17] suggested that the Search function in 
FindDiscord procedure can be some discord detection function, 
such as HOT SAX algorithm. When HOT SAX is used as the 
Search function in FindDiscord procedure, we call the resultant 
online discord detection algorithm HOTSAX-Stream. 

III. PROPOSED METHOD FOR DISCORD DETECTION: 
HDD-MBR 

In this section, we propose an algorithm with the support of 
R-tree, called HDD-MBR, for discord discovery in static time 
series. The algorithm HDD-MBR consists of the five following 
steps.  

 Step 1: Extracting subsequences of length n by sliding a 
window of length n cross the time series. 

 Step 2: From each extracted subsequence, applying PAA to 
reduce it to a w-dimensional subsequence. 

 Step 3: Inserting all the reduced subsequences in the R-tree. 

 Step 4: Creating two ordering heuristics based on the R-tree as 
described in Section II.D 
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Step 5: Applying discord detection process as in HDD 
algorithm with the two nested loops using the two created 
ordering heuristics.  

The pseudo-code of HDD-MBR is described in Fig. 4. 

Algorithm HDD-MBR  

Input: Time series T and discord length n 

Output: Discord starting position best_so_far_loc, the largest 
distance from discord to nearest neighbor best_so_far_dist. 

1.  best_so_far_dist = 0  
2.  best_so_far_loc = NaN  
3.  for i = 1 to |T| - n+1 
4.     extract subsequence ti…ti+n-1, use PAA to get a reduced           
subsequence of ti…ti+n-1 then insert it to the R-tree 
5.  endfor 
6.  CreateOuterOrder; 
7.  CreateInnerOrder; 
8.  for each p in T ordered by heuristic Outer  

// Begin Outer Loop  
9.      nearest_neigh_dist = infinity  
10.    for each q in T ordered by heuristic Inner  
                      // Begin Inner Loop  
11.       if |p – q| ≥ n  // non-seft match?  
12.           if Dist(tp…tp+n-1, tq…tq+n-1) < best_so_far_dist  
13.       break // Break out of Inner Loop  
14.  end  
15.           if MINDIST(tp…tp+n-1, R[q]) < nearest_neigh_dist 
16.               if Dist(tp…tp+n-1, tq…tq+n-1) < nearest_neigh_dist  
17.            nearest_neigh_dist = Dist(tp…tp+n-1, tq…tq+n-1)  
18.               end  
19.           end 
20.       end // End non-seft match test  
20.    endfor // End Inner Loop  
21.    if nearest_neigh_dist > best_so_far_dist  
22.       best_so_far_dist = nearest_neigh_dist 
23.       best_so_far_loc = p  
24.    end  
25. endfor // End Outer Loop  
26. return [best_so_far_dist, best_so_far_loc] 

 

Fig. 4. HDD-MBR for discord discovery in time series 

Our HDD-MBR has the same spirit as the algorithm given 
by Sanchez and Bustos for discord detection in static time 
series. However, there is one major improvement in our 
proposed algorithm, described as follows.  

The MINDIST function is employed by Sanchez and Bustos 
[20] for arranging the two ordering heuristics: one for outer loop 
and one for inner loop.  In HDD-MBR, besides using MINDIST 
function to create the two ordering heuristics, we also employ 
the MINDIST function as a lower bounding technique to prune 
off the entries in the R-tree during the search in the inner loop. 
In line 15 of HDD-MBR, the MINDIST function is used to 
prune off the subsequences which cannot be the nearest non-self 
match of the subsequence under consideration (i.e. 
MINDIST(tp…tp+n-1, R[q])  nearest_neigh_dist ). 

As for splitting operation in R-tree, in HDD-MBR we 
employ linear cost splitting technique [3] when inserting a new 
subsequence into a leaf node of the R-tree and this node is full. 
According to Guttman [6], linear splitting technique generates 
the fewest MBRs, incurs the least memory space and performs 
very fast. 

Besides, to estimate the suitable length of PAA-frame for 
each dataset (i.e. the PAA transformation in Step 1), we apply 
PLA segmentation with bottom up algorithm [7] to segment the 
time series into several linear segments. The average of the 
lengths of all these segments will be used to estimate the length 
of the PAA-frame. 

IV. HDD-MBR-STREAM FOR DISCORD DETECTION IN 
STREAMING TIME SERIES 

Our proposed algorithm for online discord detection, called 
HDD-MBR-Stream, applies the framework DCD given by Liu 
et al. [17]. HDD-MBR-Stream still uses the Candidates set 
proposed in DCD to limit the search space in finding discord 
subsequence.  The important point in our proposed algorithm is 
that while in DCD Liu et al. suggest to use the original HOT 
SAX in the role of the Search function in the FindDiscord 
procedure, our proposed algorithm uses HDD-MBR as the 
Search function in the FindDiscord procedure. Due to that, we 
name our proposed algorithm as HDD-MBR-Stream. 

HDD-MBR-Stream has to update the supporting data 
structure, i.e. the R-tree, during the discord detection process in 
a streaming time series. At every new incoming data point, the 
subsequence which contains the new data point, after PAA 
reduction, will be assigned to the suitable leaf node in the R-
tree (insert operation) and the subsequence which contains the 
out-of-date data point will be removed from its current leaf node 
(delete operation).  Due to the dynamic property of the R-tree, 
this update work can be achieved efficiently. 

Notice that the objective of discord detection in streaming 
time series in HDD-MBR-Stream is different from that of the 
algorithm proposed by Sanchez and Bustos. In HDD-MBR-
Stream, the algorithm has to find and report the discord found 
in the buffer whenever a new data point arrives. But in the 
algorithm proposed by Sanchez and Bustos, it has to determine 
a detection starting point in the stream such that it can apply 
discord detection up to that point to obtain a threshold distance. 
And after that, the algorithm alerts whenever a new data point 
generates an anomalous subsequence whose distance to its 
nearest non-self match exceeds the threshold distance.  In other 
words, the method by Sanchez and Bustos focuses on determine 
whether the new subsequence is a discord or not. 

Due to this reason, we will not compare empirically our 
HDD-MBR-Stream to the algorithm proposed by Sanchez and 
Bustos. 

A. How to determine the buffer size 

The size of the buffer can affect on the efficiency of the 
discord detection in streaming time series. If the buffer size is 
small, the detected discord results will vary so frequently.  
Otherwise, if the buffer size is too large, the computational cost 
will increase remarkably. In this work, we estimate the buffer 
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size based on the period of the time series under consideration.  
The buffer size should be a multiple of the period of the time 
series in order that for cyclic time series, the new incoming data 
point and the obsolete data point will have some similarity.   

There exist a few methods for periodicity detection in time 
series. In this work, we employ Autocorrelation Function to 
estimate the period of the time series [4]. The main idea of this 
method is that if a time series has a period, a significant 
autocorrelation coefficient will occur at the time lag equal to the 
period or multiples of the period. Therefore, in this work we 
calculate the autocorrelation coefficients between two 
subsequences C(1, n - k) and C(1+ k, n - k) in the same time 
series T  at the same time lag k  varying from 1 to n/2. The 
estimated period is the value of the lag k  which brings out the 
largest autocorrelation coefficient. 

The autocorrelation coefficient between two subsequences 
C(1, n - k) and C(1+  k, n - k) can be calculated by the formula:  

        AC  =    

=  

where ,  are the two mean values of the subsequences  
C(1, n - k) and C(1+  k, n - k),  respectively and  Std(C(1, n - k)), 
Std(C(1+  k, n - k)) are the standard deviations of  the 
subsequences  C(1, n - k) and C(1+  k, n - k),  respectively.  

V. EXPERIMENTAL EVALUATION 

In this section, we describe the results of the two main 
experiments: Experiment 1 for discord detection in static time 
series (called offline discord detection) and Experiment 2 for 
discord detection in streaming time series (called online discord 
detection). 

A. Offline Discord Detection 

For this experiment, we implemented two algorithms for 
discord detection in static time series: HOT SAX and HDD-
MBR. The experiment aims to compare HDD-MBR with the 
original HOT SAX algorithm in terms of time efficiency and 
discord detection accuracy. 

 This experiment was conducted on the datasets from the 
UCR Time Series Data Mining archive ([10], [11]). There are 7 
datasets used in this experiment.  The datasets are from different 
areas such as medicine, industry and science. The names and 
lengths of the seven datasets are shown in TABBLE I. For each 
dataset in TABLE I, we also give the discord length n_length in 
the fourth column. 

So the parameters for the two comparative algorithms are 
selected as follows: 

• HOT SAX:  w = 3, a = 3. 

• HDD-MBR:   w = n_length/4, r = 2, MaxEntryPerNode = 25 
and MinEntryPerNode = 12.  

where w is the SAX word length (the reduced dimension of 
PAA), a is the size of the alphabet used in SAX transform and 

MaxEntryPerNode and MinEntryPerNode are the maximum 
number and the minimum number of entries in a node of R-tree, 
respectively. 

TABLE I.  LENGTH AND DISCORD LENGTH FOR EACH DATASET 

Dataset Description Dataset Name Length of 
time series 

Discord 
length 

Space Shuttle 
Marotta Valve  

(TEK16, 
TEK17) 

4993, 5000 
 

128 

Electrocardiograms (ECG) 21600 40 
Power Data (Power_data) 35040 200 
Patient’s respiration 
data 

(nprs43, nprs44) 18020, 24125 160 

Earth Rotation 
Parameters  

ERP 198400 64 

   
1) Effectiveness 
Following the tradition established in previous works, such 

as [1], [9], [15], [20], the accuracy of a given discord discovery 
algorithm is basically based on human inspection of the discords 
detected by that algorithm. That means by eye, we can check if 
the discords identified by a proposed algorithm on a given time 
series dataset are almost the same as those identified by the 
baseline discord discovery algorithm which is the HOT SAX 
algorithm in this paper. If the checked result is positive in most 
of the test datasets, we can conclude that the proposed discord 
discovery algorithm brings out the same accuracy as the baseline 
algorithm. Notice that in most of the seven datasets in 
Experiment 1, the discords have been annotated by experts; 
therefore, we can spot the discords by eye with not much effort. 

We compare HDD-MBR and HOT SAX in discord detection 
accuracy over the 7 datasets.  For each dataset, we found out that 
the discord detected by HDD-MBR is exactly the same as the 
discord detected by HOT SAX.  

2) Efficiency 
Table II shows the runtimes (in seconds) of the two 

algorithms: HOT SAX, and HDD-MBR in discord detection 
over the seven datasets. From the experimental results in Table 
II, we can see that HDD-MBR performs much faster than HOT 
SAX in all the datasets. On average, HDD-MBR runs about 
20.943 times faster than HOT SAX. 

TABLE II  EXECUTION TIMES OF HOT SAX AND HDD-MBR 

Dataset HOT SAX HDD-MBR 
TEK16 2.116 0.703 
TEK17 2.554 0.521 
ECG 14.979 0.612 

Power_data 93.189 8.691 
nprs43 16.599 2.122 
nprs44 25.955 2.889 
ERP 2056.595 23.724 

 
We also compare the time efficiency of HDD-MBR to that 

of the algorithm proposed by Sanchez and Bustos called 
Bounding-Boxes. Table III shows the runtimes (in seconds) of 
the two algorithms: HDD-MBR and Bounding-Boxes in discord 
detection over the seven datasets. On average, HDD-MBR runs 
about 1.788 times faster than Bounding-Boxes. 
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TABLE III.  EXECUTION TIMES OF HDD_MBR AND Bounding-Boxes 

Dataset HDD_MBR 
Bounding-Boxes 

(Sanchez and Bustos) 

TEK16  1.687 3.893 

TEK17  1.446  3.459 

ECG  2.278 4.137 

power_data  45.604 72.057 

nprs43  16.608 19.193 

nprs44  17.530 22.732 

ERP  73.409 144.690 

 

B. Online Discord Detection 

For this experiment, we implemented three algorithms for 
discord detection in streaming time series: HOTSAX-Stream, 
HDD-MBR-Stream and Brute Force HOT SAX (BFHS). BFHS 
is a concrete version of the framework DCD (Fig. 1) in which 
HOT SAX plays the role of the FindDiscord procedure for 
detecting discord in the time series segment currently in the 
buffer. It means that BFHS has to search the whole buffer in 
each time of discord detection.  

We do not compare empirically HDD-MBR-Stream to the 
method proposed by Sanchez and Bustos [20] for discord 
detection in streaming time series due to the different purposes 
of the two methods. 

We implemented all the algorithms with Visual C# 2013 
(Window Form), and conducted the experiment on a HP, 
Intel(R) Core(TM) i5 CPU M430 @ 2.27GHz (4 CPUs), 4GB 
RAM, Windows 8.1 Pro 64-bit. 

This experiment uses the datasets from the UCR Time Series 
Data Mining archive ([8], [9]). There are 5 datasets used in this 
experiment.  The names and lengths of the five datasets are 
shown in TABLE IV. 

TABLE IV. LENGTH AND DISCORD LENGTH FOR EACH DATASET 

Dataset description 
Dataset 
Name 

(Time 
series) 
length 

Length of 
streaming 
time series 

Discord 
length 

Space Shuttle 
Marotta Valve  

TEK16 
 

2992 
 

2000 128 

Electrocardiograms ECG 16600 5000 40 
Power Data Power_data 30040 5000 200 

Patient’s 
respiration data 

nprs43 
 

13020 
 

5000 160 

Earth Rotation 
Parameters  

ERP 
193400 

 
5000 64 

 

For HDD-MBR-Stream we have to estimate six parameters: 
the period of the time series, the buffer length of the time series, 
the reduced dimension of PAA w,  the parameter for LB_Keogh  
r, the two parameters for R-tree: MaxEntryPerNode (maxE) and 
MinEntryPerNode (minE). For BFHS and HOTSAX-Stream, 
we need two more parameters: the length of SAX word w, the 
alphabet size a.  The values of the parameters in the three 
algorithms for each dataset are shown in TABLE V. 

TABLE V. PARAMETERS FOR EACH DATASET 

Dataset 
Period 
length 

Buffer 
length 

w a r MaxE 
 

MinE 

TEK16 1007 1007*2 5 3 2 25 12 

ECG 371 371*10 5 3 2 25 12 

Power_data 672 672*5 4 3 2 25 12 

Nprs43 40 40*75 3 3 2 25 12 

ERP 1280 1280*2 4 3 2 25 12 

 

1) Effectiveness 
We compare HDD-MBR-Stream and BFHS in discord 

detection accuracy over the 5 streaming time series datasets.  For 
each dataset, we found out that the discord detected by HDD-
MBR-Stream is almost the same as the discord detected by 
BFHS.  

Fig. 5 shows the TEK16 dataset with 5 periods (period 
length is about 1000). 

In Fig. 6 we evaluate our HDD-MBR-Stream algorithm in a 
real case (with dataset TEK16). The top graph shows the 
locations of the discords found by HDD-MBR-Stream, at each 
time point. The bottom graph shows the nearest non-self 
neighbor distance of each input subsequence at each time point. 

 
 

Fig. 5  TEK16 time series with five periods (period lenghth ≈1000) 

 

 

 

Fig. 6  Online discord detetion on TEK 16 dataset. (Top) Start locations of 
discords. (Bottom) Nearest non-self distances of discords (HDD-MBR-Stream) 
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2) Efficiency  
TABLE VI shows the runtimes (in seconds) of the three 

algorithms: BFHS, HOTSAX-Stream and HDD-MBR-Stream 
in discord discovery over the 5 streaming datasets. From the 
experimental results in TABLE VI, we can see that HDD-MBR-
Stream performs much faster than BFHS and HOTSAX-Stream 
in all the datasets. On average, HDD-MBR-Stream runs about 
8.064 times faster than BFHS and about 4.332 times faster than 
HOTSAX-Stream. 

TABLE VI.  EXECUTION TIMES (IN SECONDS) OF BFHS, HOTSAX-STREAM  
AND HDD-MBR-STREAM 

Dataset BFHS HOTSAX-Stream 
HDD-MBR-

Stream 
TEK16 1226 620 444 
ECG 8940 2838 454 

Power_data 11400 2765 2016 
nprs43 7740 4440 1283 
ERP 3618 2538 394 

 

VI. CONCLUSIONS 

Both discord detection in static time series and streaming 
time series are challenging problems. In this work, we proposed 
an efficient algorithm which uses R-tree, called HDD-MBR, for 
efficient time series discord detection. R-Tree helps HDD-MBR 
in arranging two ordering heuristics for outer loop and inner 
loop. In addition, we extend HDD-MBR to a new algorithm, 
called HDD-MBR-Stream for discord detection in streaming 
time series. We experimentally showed that HDD-MBR is 
much faster than HOT SAX in offline discord detection and the 
online detection algorithm HDD-MBR-Stream is remarkably 
faster than BFHS, the brute force search approach which is 
based on the original HOT SAX. 

HDD-MBR-Stream still belongs to the category of window-
based methods for time series discord detection. In the future, 
we intend to develop a much more efficient algorithm for 
discord discovery in streaming time series which is based on 
segmentation and incremental clustering. 
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